
null

Calypso Herrera, Florian Krach, Pierre Ruyssen, Josef

Teichmann

2023/02/02

Page 2

null
abstract

This paper presents new machine learning approaches to approximate the solutions of
optimal stopping problems. The key idea of these methods is to use neural networks,
where the parameters of the hidden layers are generated randomly and only the last layer
is trained, in order to approximate the continuation value. Our approaches are applicable
to high dimensional problems where the existing approaches become increasingly imprac-
tical. In addition, since our approaches can be optimized using simple linear regression,
they are easy to implement and theoretical guarantees are provided. Our randomized
reinforcement learning approach and randomized recurrent neural network approach
outperform the state-of-the-art and other relevant machine learning approaches in Marko-
vian and non-Markovian examples, respectively. In particular, we test our approaches on
Black-Scholes, Heston, rough Heston and fractional Brownian motion. Moreover, we show
that they can also be used to efficiently compute Greeks of American options.

Keywords: optimal stopping, least squares Monte Carlo, reinforcement learning, randomized neural
networks, reservoir computing, Greeks of American options

Introduction

The optimal stopping problem consists in finding the optimal time to stop in order to maximize an
expected reward. This problem is found in areas of statistics, economics, and in financial mathematics.
Despite significant advances, it remains one of the most challenging problems in optimization, in
particular when more than one factor affects the expected reward. A common provable and widely used
approach is based on Monte Carlo simulations, where the stopping decision is estimated via backward
induction (Tsitsiklis and Van Roy, 2001; Longstaff and Schwartz, 2001), which is an (approximate)
dynamic programming approach. Another provable approach is based on reinforcement learning
(RL) (Tsitsiklis and Van Roy, 1997, 2001; Yu and Bertsekas, 2007; Li et al., 2009; Chen et al., 2020).
Both approaches are based on the ordinary least squares approximation which involves choosing
basis functions. There are many different sets of basis functions available that are commonly used,
however, it can be difficult to choose a good set for the considered problem. Moreover, the number
of basis functions often increases polynomially or even exponentially (Longstaff and Schwartz, 2001,
Section 2.2) in the dimension of the underlying process, making those algorithms impractical for high
dimensions.

A relatively new approach consists in replacing the basis functions by a neural network and performing
gradient descent instead of ordinary least squares (Kohler et al., 2010; Lapeyre and Lelong, 2021;

null eth-zurich

Page 3

Becker et al., 2019, 2020). The big advantage is that the basis functions do not need to be chosen but
are learned instead. Compared to using a polynomial basis, neural networks have the advantage to be
dense in any spaceLp(µ), for 1 ≤ p <∞ and finite measure µ (Hornik, 1991), while for polynomials
this is only true under certain additional conditions on the measure (Bakan, 2008). Moreover, in many
cases the neural network overcomes the curse of dimensionality, which means that it can easily scale
to high dimensions. However, as the neural network is a non convex function with respect to its
parameters, the gradient descent does not necessarily converge to the global minimum, while this is
the case for the ordinary least squares minimization. Hence, the main disadvantage of those methods
is that there are no convergence guarantees without strong and unrealistic assumptions.

In this paper, we propose two neural network based algorithms to solve the optimal stopping problem
for Markovian settings: a backward induction and a reinforcement learning approach. The idea is
inspired by randomized neural networks (Cao et al., 2018; Huang et al., 2006). Instead of learning
the parameters of all layers of the neural network, those of the hidden layers are randomly chosen
and fixed and only the parameters of the last layer are learned. Hence, the non convex optimization
problem is reduced to a convex problem that can be solved with linear regression. The hidden layers
form random feature maps, which can be interpreted as random basis functions. In particular, in this
paper we show that there is actually no need for complicated or a large number of basis functions. Our
algorithms are based on the methods proposed by Longstaff and Schwartz (2001) (backwardinduction
approach) and Tsitsiklis and Van Roy (2001) (reinforcement learning approach). The difference is that
we use a randomized neural network instead of a linear combination of basis functions. However, a
randomized neural network can also be interpreted as a linear combination of random basis functions.
On the other hand, our algorithms can also be interpreted as the neural network extensions of these
methods, where not the entire neural network but only the last layer is trained.

In addition, we provide a randomized recurrent neural network approach for nonMarkovian settings.
We compare our algorithms to the most relevant baselines in terms of accuracy and computational
speed in different option pricing problems. With only a fraction of trainable parameters compared to
existing methods, we achieve high quality results considerably faster.

Optimal Stopping via Randomized Neural Networks

One of the most popular and most studied applications of optimal stopping is the pricing of American
options. Hence, we explain our approach in this context.

null eth-zurich

Page 4

American and Bermudan Options

An American option gives the holder the right but not the obligation to exercise the option associated
with a non-negative payoff function g at any time up to the maturity. An American option can be
approximated by a Bermudan option, which can be exercised only at some specific dates t0 < t1 <

t2 < · · · < tN , transforming the continuous-time problem to a discrete one. If the time grid is chosen
small enough, the American option is well approximated by the Bermudan option. In the case of a
Rough Heston model, the convergence rate of the Bermudan option price to the American option price
was shown in (Chevalier et al., 2021, Theorem 4.2). For equidistant dates we simply write 0, 1, 2, . . . , N
instead of t0 < t1 < t2 < · · · < tN .

Option Price and Optimal Stopping.

For d ∈ N, we assume to have a d-dimensional Markovian stochastic process (Xt)t≥0 describing the
stock prices. With respect to a fixed (pricing) probability measure Q, the (superhedging seller’s) price
of the discretized American option can be expressed through the Snell envelope described by

UN := g (XN) ,

Un := max (g (Xn) ,E [αUn+1 | Xn]) , 0 ≤ n < N,

where α is the step-wise discounting factor and g (Xn) is assumed to be square integrable for all n.
Then the (superhedging seller’s) price of the option at time n is given byUn and can equivalently be
expressed as the optimal stopping problem

Un = sup
τ∈Tn

E
[
ατ−ng (Xτ) | Xn

]
,

where Tn is the set of all stopping times τ ≥ n. The smallest optimal stopping time is given by

τN := N,

τn :=

n, if g (Xn) ≥ E [αUn+1 | Xn] ,

τn+1, otherwise.

In particular, at maturity N , the holder receives the final payoff, and the value of the option UN

is equal to the payoff g (XN). At each time prior to the maturity, the holder decides whether to
exercise or not, depending on whether the current payoff g (Xn) is greater than the continuation value
cn (Xn) := E [αUn+1 | Xn]. Combining expression (1), (2) and (3), we can write the price at initial time
as

null eth-zurich

Page 5

U0 = max (g (X0) ,E [ατ1g (Xτ1)]) .

In the following we approximate the price U0 and continuation values cn (Xn) which are defined
theoretically but cannot be computed directly.

Monte Carlo Simulation and Backward Recursion

We assume to have access to a procedure to sample discrete paths ofX under Q. A standard example
is that X follows a certain stochastic differential equation (SDE) with known parameters. There-
fore, we can samplem realizations of the stock price paths, where the i-th realization is denoted by
x0, x

i
1, x

i
2, . . . , x

i
N , with the fixed initial value x0. For each realization, the cash flow realized by the

holder when following the stopping strategy (3) is given by the backward recursion

pi
N := g

(
xi

N

)
,

pi
n :=

g
(
xi

n

)
, if g

(
xi

n

)
≥ cn

(
xi

n

)
αpi

n+1, otherwise

As pi
1 are samples of ατ1−1g (Xτ1), we have by the strong law of large numbers that almost surely

U0 = max
(
g (X0) , lim

m→∞
1
m

m∑
i=1

αpi
1

)

Randomized Neural Network Approximation of the Continuation Value

For each path i in{1, 2, . . . ,m}and each daten in{1, 2, . . . , N−1}, the continuation value is cn
(
xi

n

)
=

E
[
αUn+1 | Xn = xi

n

]
, where cn : Rd → Rdescribes the expected value of the discounted priceαUn+1

if we keep the option until next exercising date n+ 1, knowing the current values of the stocksXn. We
approximate this continuation value function by a neural network, where only the parameters of the
last layer are learned. We refer to such a network as a randomized neural network. Even though the
architecture of the neural network can be general, we present our algorithm with a simple dense shallow
neural network, where the extension to deep networks is immediate. We call σ : R→ R the activation
function. A common choice is σ(x) = tanh(x), however, there are many other suitable alternatives.
For K ∈ N, we define σ : RK−1 → RK−1, σ(x) = (σ (x1) , . . . ,σ (xK−1))⊤ for x ∈ RK−1. Let
ϑ := (A, b) ∈ R(K−1)×d × RK−1 be the parameters of the hidden layer which are randomly and
identically sampled and not optimized. In general,A and b can be sampled from different distributions
that are continuous and cover all of R. The distributions and their parameters are hyperparameters

null eth-zurich

Page 6

of the randomized neural network that can be tuned. For simplicity we use a standard Gaussian
distribution. Let us define

ϕ : Rd → RK , x 7→ ϕ(x) =
(
σ(Ax+ b)⊤, 1

)⊤
.

and let θn :=
(
(An)⊤ , bn

)
∈ RK−1 × R be the parameters that are optimized. Then for each n the

continuation value is approximated by

cθn(x) := θ⊤
n ϕ(x) = A⊤

n σ(Ax+ b) + bn.

Least Squares Optimization of Last Layer’s Parameters θn

While the parameters ϑ of the hidden layer are set randomly, the parameters θn of the last layer are
found by minimizing the squared error of the difference between conditional expectation of the dis-
counted future price and the approximation function. This is equivalent to finding θn which minimizes
EQ

[(
cθn

(
xi

n, n
)
− αUn+1

)2 | Xn = xi
n

]
for each time n in {1, 2, . . . , N − 1}. The backward recursive

Monte Carlo approximation of this expectation at time n yields the loss function

ψn (θn) =
m∑

i=1

(
cθn

(
xi

n

)
− αpi

n+1

)2
.

As the approximation function cθn is linear in the parameters θn, the minimizer can be found by ordinary
least squares. It is given by the following closed form expression, which is well defined under the
standard assumptions (see Theorems 5 and 6)

θn = α

(
m∑

i=1
ϕ
(
xi

n

)
ϕ⊤
(
xi

n

))−1

·
(

m∑
i=1

ϕ
(
xi

n

)
pi

n+1

)
.

Splitting the Data Set into Training and Evaluation Set

The parameters θn are determined using 50% of the sampled paths (training data). Given θn, the
remaining 50% of the sampled paths (evaluation data) are used to compute the option price. By
definition, the continuation value cn is a conditional expectation, which is not allowed to depend on
the future valuesXn+1. If the data set was not split, this might not be satisfied, since the loss function
(5) uses the future values Xn+1. In particular, the neural network can suffer from overfitting to the
training data, by memorizing the paths, instead of learning the continuation value. This is related to
the maximization bias discussed in (Sutton and Barto, 2018, Section 6.7).

null eth-zurich

Page 7

Algorithm

We first sample 2m paths and then proceed backwards as follows. At maturity, the pathwise option
price approximation is equal to the payoff, which means that pi

N = g
(
xi

N

)
. For each time n in

{N − 1, N − 2, . . . , 0}, we first determine θn as described before using the paths {1, 2, . . . ,m}. For all
paths i ∈ {1, 2, . . . , 2m}we then compare the exercise value g

(
xi

n

)
to the continuation value cθn

(
xi

n

)
and determine the path-wise option price approximation at time n as

pi
n = g

(
xi

n

)
︸ ︷︷ ︸

payoff

1{g(xi
n)≥cθ(xi

n)}︸ ︷︷ ︸
exercise

+ αpi
n+1︸ ︷︷ ︸

discounted future price

1{g(xi
n)<cθ(xi

n)}︸ ︷︷ ︸
continue

.

Finally, the second half of the paths {m + 1, . . . , 2m} is used to compute the option price approxi-
mation p0 = max

(
g (x0) , 1

m

∑2m
i=m+1 αp

i
1

)
. We call this algorithm, which is presented in Algorithm 1,

randomized least squares Monte Carlo (RLSM).

Algorithm 1 Optimal stopping via randomized least squares Monte Carlo (RLSM)

Input: discount factor α, initial value x0

Output: price p0

1: sample a random matrixA ∈ R(K−1)×d and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process
(
xi

1, . . . , x
i
N

)
for i ∈ {1, . . . , 2m}

3: for each path i ∈ {1, . . . , 2m}, set pi
N = g

(
xi

N

)
4: for each time n ∈ {N − 1, . . . , 1}

a: for each path i ∈ {1, . . . , 2m}, set ϕ
(
xi

n

)
=
(
σ
(
Axi

n + b
)⊤
, 1
)⊤
∈ RK

b: set θn = α
(∑m

i=1 ϕ
(
xi

n

)
ϕ⊤ (xi

n

))−1 (∑m
i=1 ϕ

(
xi

n

)
pi

n+1
)

c: for each path i ∈ {1, . . . , 2m}, set pi
n = g

(
xi

n

)
1g(xi

n)≥θ⊤
n ϕ(xi

n) + αpn+11g(xi
n)<θ⊤

n ϕ(xi
n)

5: set p0 = max
(
g (x0) , 1

m

∑2m
i=m+1 αp

i
1

)

Guarantees of Convergence

We present results that guarantee convergence of the price computed with our algorithm to the correct
price of the discretized American option. The formal results with precise definitions and proofs are
given in Section A. In contrast to comparable results for neural networks (Lapeyre and Lelong, 2021;
Becker et al., 2019, 2020), our results do not need the assumption that the optimal weights are found

null eth-zurich

Page 8

by some optimization scheme like stochastic gradient descent. Instead, our algorithms imply that the
optimal weights are found and used.

Theorem 1 (informal). As the number of sampled pathsm and the number of random basis functions
K go to∞, the price p0 computed with Algorithm 1 converges to the correct price of the Bermudan
option.

Possible Extensions

When the set of pricing measuresQ has more than one element (in case of an incomplete market), the
option price is given by supQ∈Q U

Q
0 , whereUQ is defined as in (1). Assuming that we can sample from

a finite subsetQ1 ⊂ Q, this price can be approximated by first computing the price for each measure
inQ1 and taking the maximum of them.

For simplicity we assume that the payoff function only takes the current price as input, however, all
our methods and results stay valid if g (Xn) is replaced by a square integrableFn-measurable random
variableZn, whereFn denotes the information available up to time n. In the case that (Zn)1≤n≤N is
Markov, Algorithm 1 and Algorithm 2 (Section 3) can be used, otherwise Algorithm 3 (Section 4) has to
be used, to deal with the path dependence. In the following sections we stick to the notation g (Xn)
for the payoff, keeping in mind that the extension to a generalZn is also valid there.

Optimal Stopping via Randomized Reinforcement Learning

In order to avoid approximating the continuation value at each single date n ∈ {1, . . . , N − 1}
with a different function, as it is done in Section 2, we can directly learn the continuation function
which also takes the time as argument. Hence, instead of having a different function cθn

(
xi

n

)
for

each date n, we learn one function which is used for all dates n. As previously, we define ϑ :=
(A, b) ∈ R(K−1)×(d+2)×RK−1 the parameters of the hidden layer which are randomly chosen and not
optimized, and ϕ : Rd+2 → RK , ϕ(n, x) =

(
σ (Ax̃n + b)⊤ , 1

)⊤
, where x̃n =

(
n,N − n, x⊤

n

)⊤
. Let

θ ∈ RK define the parameters that are optimized, then the continuation value is approximated by

cθ(n, x) = θ⊤ϕ(n, x).

Instead of having a loop backward in time with N steps, we iteratively improve the approximation
cθ. More precisely, we start with some (random) initial weight θ0 and then iteratively improve it by
minimizing the difference between the continuation function cθℓ

and the prices p computed with the
previous weight θℓ−1. Moreover, differently than in Section 2, we use the continuation value for the
decision whether to continue and for the approximation of the discounted future price, as in (Tsitsiklis

null eth-zurich

Page 9

and Van Roy, 2001). This second algorithm can be interpreted as a randomized fitted Q-iteration
(RFQI) and is presented in Algorithm 2. It is a very simple type of reinforcement learning, where the
agent has only two possible actions and the agent’s decision does not influence the transitions of the
state. In particular the agent’s decision does not influence the evolution of the underlying stocks. As a
reinforcement learning method, it is based on the assumption that the optimization problem can be
modeled by a Markov decision process.

Algorithm 2 Optimal stopping via randomized fitted Q-Iteration (RFQI)
Input: discount factor α, initial value x0

Output: price p0

1: sample a random matrixA ∈ R(K−1)×(d+2) and a random vector b ∈ RK−1

2: simulate 2m paths of the underlying process
(
xi

1, . . . , x
i
N

)
for i ∈ {1, . . . , 2m}

3: initialize weights θ0 = 0 ∈ RK and set ℓ = 0
4: until convergence of θℓ

a: for each path i ∈ {1, . . . , 2m}
i: set pi

N = g
(
xi

N

)
ii: for each date n ∈ {1, . . . , N − 1},
setϕ

(
n, xi

n

)
=
(
σ
(
Ax̃i

n + b
)
, 1
)
∈ RK

set pi
n = max

(
g
(
xi

n

)
, ϕ
(
n, xi

n

)⊤
θℓ

)
b: set θℓ+1 = α

(∑N
n=1

∑m
i=1 ϕ

(
n, xi

n

)
ϕ⊤ (n, xi

n

))−1
·
(∑N

n=1
∑m

i=1 ϕ
(
n, xi

n

)
pi

n+1

)
∈ RK

c: set ℓ← ℓ+ 1
5: set p0 = max

(
g (x0) , 1

m

∑2m
i=m+1 αp

i
1

)

Guarantees of Convergence.

We present results that guarantee convergence of the price computed with our algorithm to the correct
price of the discretized American option. The formal results with precise definitions and proofs are
given in Section B.

Theorem 2 (informal). As the number of iterations L, the number of sampled pathsm and the number
of random basis functionsK go to∞, the price p0 computed with Algorithm 2 converges to the correct
price of the Bermudan option.

Optimal Stopping via Randomized Recurrent Neural Networks for
Non-Markovian Processes

For non-Markovian processes, for each date n, the continuation function is no longer a function of the
last stock price, cn (Xn), but a function depending on the entire history cn (X0, X1, . . . , Xn−1, Xn).

null eth-zurich

Page 10

More precisely, the continuation value is now defined by cn := E [αg (Xn+1) | Fn] where Fn de-
notes the information available up to time n. Therefore, we replace the randomized feed-forward
neural network by a randomized recurrent neural network (randomized RNN), which can utilize the
entire information of the path up to the current time (x0, x1, . . . , xn−1, xn). In particular, we define
ϑ := (Ax, Ah, b) ∈ R(K−1)×d× R(K−1)×(K−1) × RK−1, the parameters of the hidden layer which
are randomly sampled and not optimized. However, their distributions and parameters, which don’t
have to be the same forAx andAh, are hyperparameters that can be tuned. Those tuning parameters
are more important in this case, as they determine the interplay between past and new information.
Moreover, we define

ϕ : Rd × RK → RK+1, (x, h) 7→ ϕ(x, h) =
(
σ (Axx+Ahh+ b)⊤ , 1

)⊤

and θn :=
(
(An)⊤ , bn

)
∈ RK−1 × R, the parameters that are optimized. Then for each n, the

continuation value is approximated by

{
hn = σ (Axxn +Ahhn−1 + b)
cθn (hn) = A⊤

n hn + bn = θ⊤
n ϕ (xn, hn−1)

with h−1 = 0. We call this algorithm, which is presented in Algorithm 3, randomized recurrent least
squares Monte Carlo (RRLSM).

null eth-zurich

Page 11

Guarantees of Convergence

We present results that guarantee convergence of the price computed with our algorithm to the correct
price of the discretized American option. The formal results with precise definitions and proofs are
given in Section C.

Theorem 3 (informal). As the number of sampled pathsm and the number of random basis functions
K go to∞, the price p0 computed with Algorithm 3 converges to the correct price of the Bermudan
option.

Related Work

In this section we present the most relevant approaches for the optimal stopping problem: backward
induction either with basis functions or with neural networks and reinforcement learning. Moreover,
we explain the connection of our algorithms to randomized neural networks and reservoir computing
techniques.

Optimal Stopping

Numerous works studied the optimal stopping problem via different approaches. A common ap-
proach consists in using a regression based method to estimate the continuation value (Tilley, 1993;
Barraquand and Martineau, 1995; Carriere, 1996; Tsitsiklis and Van Roy, 1997, 2001; Longstaff and
Schwartz, 2001; Schweizer, 2002; Boyle et al., 2003; Broadie and Glasserman, 2004; Kolodko and
Schoenmakers, 2004; Egloff et al., 2007; Jain and Oosterlee, 2015), or the optimal stopping boundary
(Pham, 1997; Andersen, 1999; Garcia, 2003). A different approach uses quantization (Bally and Pagès,
2003; Bally et al., 2005). A dual approach was developed and extended in (Rogers, 2002; Haugh and
Kogan, 2004; Rogers, 2010). Bank and Besslich (2019) studied Lenglart’s Theory of Meyer-sigma-fields
and El Karoui’s Theory of Optimal Stopping (El Karoui, 1981). An in depth review of the different
methods is given in (Bouchard and Warin, 2012; Pagès, 2018).

Optimal Stopping Via Backward Induction

One of the most popular approaches are the backward induction methods introduced by Tsitsiklis and
Van Roy (2001) and Longstaff and Schwartz (2001). Tsitsiklis and Van Roy (2001) use the approximated
continuation value to estimate the current price, by using the following backward recursion

pi
n = max

(
g
(
xi

n

)
, cθn

(
xi

n

))
.

null eth-zurich

Page 12

Instead, Longstaff and Schwartz (2001) use the continuation value only for the decision to stop or to
continue.

pi
n =

g
(
xi

n

)
, if g

(
xi

n

)
≥ cθn

(
xi

n

)
αpi

n+1, otherwise

The second algorithm is more robust, as the approximation is only used for the decision and not for
the estimation of the price. Hence, the method proposed by Longstaff and Schwartz (2001) is the most
used method in the financial industry and can be considered state-of-the-art. In both papers, the
approximation cθ

(
xi

n

)
= θ⊤ϕ

(
xi

n

)
is used, where ϕ = (ϕ1, . . . , ϕK) is a set ofK basis functions and

θ ∈ RK are the trainable weights. Possible choices for the basis functions proposed in Longstaff and
Schwartz (2001) are Laguerre, Hermite, Legendre, Chebyshev, Gegenbauer, and Jacobi polynomials.
While they have the advantage of having convergence guarantees, both algorithms do not easily scale
to high dimensional problems since the number of basis functions usually grows polynomially or even
exponentially (Longstaff and Schwartz, 2001, Section 2.2) in the number of stocks. One direction of
research to overcome this problem is to apply dimension reduction techniques (Bayer et al., 2021).

Optimal Stopping via Backward Induction using Neural Networks.

Another idea to overcome this issue was proposed by Kohler et al. (2010), which consists in approxi-
mating the continuation value by a neural network

fθ

(
xi

n

)
≈ cθ

(
xi

n

)
.

That way, the features are learned contrary to the basis functions which must be chosen. While
Kohler et al. (2010) use the backward recursion (7) introduced by Tsitsiklis and Van Roy (2001), both
Lapeyre and Lelong (2021) and Becker et al. (2020) use the backward recursion (8) suggested by
Longstaff and Schwartz (2001). Instead of approximating the continuation value, Becker et al. (2019)
suggested to approximate the whole indicator function presented in (8) by a neural network fθn

(
xi

n

)
≈

1{g(xi
n)≥c(xi

n)}. Therefore the current price can be estimated by

pi
n = g

(
xi

n

)
fθn

(
xi

n

)
︸ ︷︷ ︸

stop

+αpi
n+1

(
1− fθk

(
xi

n

))
︸ ︷︷ ︸

continue

.

Moreover, instead of minimizing the loss function (5) in order to find a good approximation of the
continuation function, Becker et al. (2019) optimize the parameters by directly maximizing the option
price ψn (θn) = 1

m

∑m
i=1 αp

i
n.

null eth-zurich

Page 13

All those methods use a stochastic gradient based method to optimize the parameters of the neural
networks. They have to find the parameters ofN − 1 neural networks (using a different neural network
for each date). Since they use stochastic gradient methods with a non-convex loss function they cannot
provide theoretical convergence guarantees, without the strong assumption that they find the optimal
parameters.

Optimal Stopping Via Reinforcement Learning

By its nature, reinforcement learning is closely related to the dynamic programming principle as shown
in (Sutton and Barto, 2018; Bertsekas and Tsitsiklis, 1996). Moreover the optimal stopping problem is
well studied as an application of reinforcement learning (Tsitsiklis and Van Roy, 1997, 2001; Yu and
Bertsekas, 2007; Li et al., 2009). In all those methods, a linear approximator is used (linear combination
of basis functions), similarly to the LSM method (Longstaff and Schwartz, 2001). If a standard set of
basis functions that grows polynomially in the dimension is used, then these methods suffer from the
curse of dimensionality. In particular, they cannot practically be scaled to high dimensions as can be
seen in our numerical results. To the best of our knowledge, our approach constitutes the first time that
randomized neural networks are used to approximate the value function in reinforcement learning.

Randomized Neural Networks and Reservoir Computing

In RLSM and RFQI we use a neural network with randomly sampled and fixed hidden layers, where only
the last layer is reinitialized and trained at each time n ∈ {N − 1, . . . , 1}. The architecture used at
each time can be interpreted as a neural network with random weights (NNRW) studied and reviewed
in (Cao et al., 2018), where a universality result was provided in (Huang et al., 2006). Randomized
neural networks as approximation functions were also studied by Gorban et al. (2016).

Randomized recurrent neural networks are an extension of randomized neural networks. A recurrent
neural network (RNN) where the parameters are randomly generated and fixed and only the readout
map is trained, is known as reservoir. Reservoir computing not only reduces the computation time,
but also outperforms classical fully trained RNNs in many tasks (Schrauwen et al., 2007; Verstraeten et
al., 2007; Lukoševičius and Jaeger, 2009; Gallicchio et al., 2017). Similarly as in reservoir computing, in
our randomized recurrent neural network algorithm RRLSM the parameters of the hidden layers are
randomly sampled and fixed thereafter. However, while reservoir computing trains only one readout
map which has the same parameters for all times, we train a different readout map for each single time
n ∈ {N − 1, . . . , 1} similarly to RLSM.

null eth-zurich

Page 14

Backward Induction versus Reinforcement Learning

Backward induction is an (approximate) dynamic programming (ADP) approach. While Sutton and
Barto (2018) regard ADP as a class of RL algorithms, we distinguish these two approaches in this work,
because of their different algorithmic structure and their different ways of using the training data. In
particular, backward recursion computes the approximation of the continuation value for each date
sequentially. More precisely, it starts at the final date and goes backward in time. For the approximation
at each date, only the data of this date is used. In contrast to this, RL starts with an initial approximation
that is applied for all dates and iteratively improves this approximation. This way, the data of all dates
is used to improve the approximation of all dates. In comparison to backward recursion, this can be
interpreted as a type of transfer learning between the dates.

Experiments

There are numerous ways to empirically evaluate optimal stopping approaches. Therefore, we choose
the most studied settings that were considered in the American option pricing literature. In particular,
we only consider synthetic data. Applications to real data involve model calibration which is an
independent problem and finally results in applying the optimal stopping algorithm to synthetically
generated data again.

Besides our algorithms, we also implemented the baselines and provided all of them at
https://github.com/HeKrRuTe/OptStopRandNN.

Experimental Setup

The evaluation of all the algorithms was done on the same computer, a dedicated machine with 2×
Intel Xeon CPU E5-2697 v2 (12 Cores) 2.70GHz and 256GiB of RAM.

Baselines (LSM, NLSM, DOS And FQI)

We compare RLSM and RFQI to three backward induction algorithms and one reinforcement learning
approach. First, the state-of-the-art least squares Monte Carlo (LSM) (Longstaff and Schwartz, 2001).
Second, the algorithm proposed by Lapeyre and Lelong (2021), where the basis functions are replaced
by a deep neural network (NLSM). Third, the deep optimal stopping (DOS) (Becker et al., 2019), where
instead of the continuation value the whole indicator function of the stopping decision is approximated
by a neural network. Finally, the fitted Q-iteration (FQI) presented as the second algorithm in (Tsitsiklis
and Van Roy, 1997). Li et al. (2009) studied and compared two reinforcement learning based methods

null eth-zurich

Page 15

(FQI and LSPI) to solve the optimal stopping problem. Since FQI always worked better in our experi-
ments, we only show comparisons to this algorithm. Our aim is to compare the main concepts of all
the different algorithms in a fair way, hence we leave away certain (more sophisticated) particularities
unique to each of them.

Choice of Basis Functions for the Baselines

There are many possible choices for the set of basis functions. Longstaff and Schwartz (2001) proposed
to use the first three weighted Laguerre polynomials for LSM and Li et al. (2009) added three additional
basis functions of the date for FQI. While the size of this set of basis functions scales linearly with
the dimension, it does not include any interaction terms. The classical polynomial basis functions
up to the second order are the easiest way to include coupling terms in the basis. To deal with the
time dependence of FQI, the relative date t/T and 1− t/T are added as additional coordinates to the
d-dimensional stock vector. The size of this basis grows quadratically in the dimension d, i.e. it has
1 + 2d+ d(d− 1)/2 elements for LSM and for FQI d is replaced by d+ 2. The results obtained with the
classical polynomials up to degree two were better than with the weighted Laguerre polynomials for
LSM and FQI, therefore we only present these results in our Tables. For large d the computations of
LSM and FQI did not terminate within a reasonable amount of time (several hours) and therefore were
aborted.

No Regularization for LSM And FQI

While increasing the number of hidden nodes without applying penalization led to overfitting for
RLSM and RFQI , this was not observed for LSM and FQI. In particular, for LSM Ridge regression (L2-
penalisation) was tested without leading to better results than standard linear regression. Moreover,
comparing the results of FQI, RFQI and DOS for growing dimensions shows that overfitting does
not become a problem when more basis functions are used. Therefore, also for FQI standard linear
regression was used as suggested by Tsitsiklis and Van Roy (1997).

Architecture of Neural Networks

In order to have a fair comparison in terms of accuracy and in terms of computation time, we use the
same number of hidden layers and nodes per layer for all the algorithms.

• As we observed that one hidden layer was sufficient to have a good accuracy (an increase of the
number of the hidden layers did not lead to better accuracy), we use one hidden layer. Therefore,
NLSM, DOS, and all algorithms that we proposed have only one hidden layer.

null eth-zurich

Page 16

• We use 20 nodes for the hidden layer. For RFQI the number of nodes is set to the minimum
between 20 and the number of stocks for stability reasons.

• Leaky ReLU is used for RLSM and RFQI and tanh for the randomized recurrent neural network
RRLSM. For NLSM and DOS, we use the suggested activation functions, Leaky ReLU for NLSM and
ReLU and sigmoid for DOS.

• The parameters (A, b) of the random neural networks of RLSM and RFQI are sampled using a
standard normal distribution with mean 0 and standard deviation 1 . Different hyper-parameters
were tested, but they didn’t have a big influence on the results so we kept the standard choice. -
For the randomized recurrent neural network of RRLSM, we use a standard deviation of 0.0001
forAx and 0.3 forAh. Also here different hyper-parameters were tested, and the best performing
were chosen and used to present the results. The same holds for tested path-dependent versions
of RFQI , however, none of the hyper-parameters performed very well as shown below.

• Some of the reference methods suggest to use the payoff as additional input, while others do
not or leave this open. Therefore, we tested using the payoff as input and not using it for each
method in each experiment. We came to the conclusion that the backward induction algorithms
(LSM, DOS, NLSM, RLSM) usually work slightly better with, while the reinforcement learning
algorithms (FQI, RFQI) usually work slightly better without the payoff. Hence, we show these
results.

• As suggested by the authors, we used batch normalization for the implementation of DOS.

The Markovian Case - Bermudan Option Pricing

First we evaluate RLSM and RFQI in the standard Markovian setting of Bermudan option pricing with
different stock price models and payoff functions.

Stock Models (Black-Scholes and Heston)

We test our algorithm on two multidimensional stochastic models, Black-Scholes and Heston with
fixed parameters. For each model we samplem = 20′000 paths on the time interval [0, 1] using the
Euler-scheme withN = 10 equidistant dates. As explained in Section 2.6, we use half of the paths as
training set and the second half to compute the approximated price using the trained continuation
value respectively decision function.

The Black-Scholes model for a max call option is a widely used example in the literature (Longstaff and
Schwartz, 2001; Lapeyre and Lelong, 2021; Becker et al., 2019). The Stochastic Differential Equation
(SDE) describing this model is

null eth-zurich

Page 17

dXt = (r − δ)Xtdt+ σXtdWt

withX0 = x0 where (Wt)t≥0 is a d-dimensional Brownian motion. If not stated differently, we choose
the rate r = 0%, the dividend rate δ = 0%, the volatility σ = 20% and the initial stock price x0 ∈
{80, 100, 120}.

To increase the complexity, we also compare the algorithms on the Heston model (Heston, 1993), which
is also used in (Lapeyre and Lelong, 2021). The SDE describing this model is

dXt = (r − δ)Xtdt+
√
vtXtdWt,

dvt = −κ (vt − v∞) dt+ σ
√
vtdBt

with X0 = x0 and v0 = ν0, where (Wt)t≥0 and (Bt)t≥0 are two d-dimensional Brownian motions
correlated with coefficient ρ ∈ (−1, 1). Here,X is the stock price and v the stochastic variance process.
If not stated differently, we choose the drift r = 0%, the dividend rate δ = 0%, the volatility of volatility
σ = 20%, the long term variance v∞ = 0.01, the mean reversion speed κ = 2, the correlation
ρ = −30%, the initial stock price x0 = 100 and the initial variance ν0 = 0.01. Since the Heston model
is Markovian only if the price and the variance (Xt, vt) are observed simultaneously, we give both
values as inputs to the algorithms here, and denote this below by “Heston (with variance)”.

Payoffs (Max Call, Geometric Put, Basket Call and Min Put)

We test our algorithms on three different types of options: the max call, the geometric put and the
basket call. First, we consider the max call option as it is a classical example used in optimal stop-
ping (Lapeyre and Lelong, 2021; Becker et al., 2019). The payoff of a max call option is defined by
g(x) = (max (x1, x2, . . . , xd)−K)+for any x = (x1, x2, . . . , xd) ∈ Rd. Moreover, we also consider
the geometric put option as used in (Lapeyre and Lelong, 2021). The payoff of the geometric put
option is defined by g(x) =

(
K −

(∏d
i=1 xi

)1/d
)

+
. We also test our approach on a basket call option

(Hanbali and Linders, 2019), where the payoff is given by g(x) =
(

1
d

∑d
i=1 xi −K

)
+

and a min put
option with payoff g(x) = (K −min (x1, x2, . . . , xd))+. For all these payoffs, the strikeK is set to 100
.

Reference Prices

In some cases reference prices can be computed, to which the prices computed with the different
algorithms can be compared. All call options where the underlying stocks have a rate r ≥ 0 and
dividend δ = 0 are optimally executed at maturity. Therefore, the price of the American option and

null eth-zurich

Page 18

of the corresponding European option are the same under these constraints (Föllmer and Schied,
2016). For all examples where this is the case, we compute the European option price (EOP) as an
approximation of the correct American option price.

Moreover, as explained in (Lapeyre and Lelong, 2021), geometric put options on d dimensional stocks
following Black-Scholes are equivalent to one-dimensional put options on a 1-dimensional stock
following Black-Scholes with adjusted parameters. The 1-dimensional problem can be priced efficiently
with the CRR binomial-tree method (B) (Cox et al., 1979). With the adjusted parameters σ̂ = σ√

d
and

δ̂ = δ + σ2−σ̂2

2 the binomial-tree model is

defined with factors for the stock price going up and down up = exp(σ̂
√
T/N), down = 1

up , probabili-

ties to go up and down p = exp((r−δ̂)T/N)− down
up−down , 1− p and step-wise discounting factor exp(−rT/N).

Cox et al. (1979) have shown that the price computed with this method converges to the correct price
under the Black-Scholes model asN → ∞. Hence, this method yields good approximations of the
correct option price for largeN . Whenever applied, we useN = 10′000 for the binomial-tree method.
While in the first case of call options, the optimal stopping problem has an easy solution, i.e. to wait
until maturity, this is not the case here, where the optimal stopping problem is harder.

The remaining options, i.e. call options with δ > 0, put options with r > 0 and geometric put option
with underlying stocks following a Heston model, also constitute more complex stopping problems
and no efficient methods to compute the (approximately) correct price are available. Therefore, we
evaluate the performance of the algorithms by comparing the approximated prices directly. Since
these prices are computed on unseen paths for all algorithms, where at each time, the algorithm can
only decide whether to exercise or not, higher prices imply better performance of the algorithms.

Results and Discussion

All algorithms are run 10 times in parallel and the mean and standard deviation (in parenthesis) of the
prices respectively the median of the corresponding computation times are reported. In particular, the
computation times do not include the time for generating the stock paths, since the main interest is in
the actual time the algorithms need to compute prices and paths can be generated offline and stored.
In the following, we always compare computation times for large d, since random machine influences
have less impact there.

null eth-zurich

Page 19

Table 1: Max call option on Black-Scholes for different number of stocks d and varying initial stock price
x0.

Table 2: Max call option on Heston (with variance) for different number of stocks d.

Table 3: Basket call options on Black-Scholes for different number of stocks d.

In all cases RLSM and RFQI are the fastest algorithms while achieving at least similar prices to the best
performing baselines. Their biggest strength are high dimensional problems (d ≥ 500), where this
speed-up becomes substantial.

null eth-zurich

Page 20

Table 4: Geometric put options on Black-Scholes and Heston (with variance) for different number of
stocks d. Here r = 2% is used as interest rate.

Table 5: Min put option on Black-Scholes for different number of stocks d and varying initial stock price
x0. Here r = 2% is used as interest rate.

Table 6: Max call option on Black-Scholes for different number of stocks d. Here r = 5% is used as
interest rate and δ = 10% as dividend rate.

In these high dimensional problems, RLSM outperforms all baselines in terms of prices, even tough
RLSM has much less trainable parameters than DOS and NLSM. Moreover, RFQI achieves the highest
prices there, and therefore works best, while having considerably less trainable parameters, since only
one neural network (with a random hidden layer) of

Table 7: Min put option on Heston (with variance) for different number of stocks d. Here r = 2% is used
as interest rate.

null eth-zurich

Page 21

Table 8: Max call option on Heston (with variance) for different number of stocks d. Here r = 5% is
used as interest rate and δ = 10% as dividend rate.

Table 9: Max call option on Black-Scholes for different number of stocks d and higher number of exercise
datesN .

the respective size is used for all exercise dates. In particular, RFQI has only 21 trainable parameters,
compared to more than 20dN for DOS and NLSM.

Comparing the achieved prices of LSM and FQI, we can confirm the claim of Li et al. (2009), that
reinforcement learning techniques usually outperform the backward induction in the Markovian setting.
RFQI , achieving similar prices as FQI, therefore naturally outperforms RLSM which achieves similar
prices as LSM. A possible explanation for the outperformance of the reinforcement learning algorithm is
the following. The backward induction algorithms have approximatelyN times the number of trainable
parameters used in the reinforcement learning algorithms, since a different network is trained for each
discretisation date. Moreover, for the backward induction algorithms, a different continuation value
function is approximated for each date, hence, only the data of this date is used to

Table 10: Max call option on Black-Scholes for different number of stocks d and higher num-

null eth-zurich

Page 22

ber of exercise dates N . Here r = 5% is used as interest rate and δ = 10% as dividend rate.

Figure 1: At the money max call option without dividend on Black-Scholes.

learn the parameters. In contrast, the reinforcement learning methods train their parameters using the
data of all dates. Hence, the reinforcement learning methods useN times the number of data to train
1/N times the number of parameters, which seems to lead to better approximations.

We first give a detailed discussion of results for the easy optimal stopping problems, where it is optimal
to exercise the option at maturity. Although these optimal stopping problems

0. Due to memory overflow issues, FQI could only be run with 5 instead of 10 parallel runs for larger
N , hence the computation times are smaller then they would otherwise be, due to more CPU
power per run.

null eth-zurich

Page 23

Figure 2: At the money max call option with dividend on Black-Scholes.

are less complex, they are still interesting, because a minimal requirement for the algorithms should
be that they perform well in these basic examples. Moreover, a comparison to the reference price
is possible. In Table 1 and Figure 1 we show results of a max call option on Black-Scholes. For high
dimensions (d ≥ 500), RLSM is about 8 times faster than the fastest baseline NLSM and about 30 times
faster than DOS. Moreover, RFQI is about twice as fast as RLSM. For d = 100 we also see the large
difference in computation time between LSM (respectively FQI), where the number of basis functions
grows quadratically in d, and RLSM (respectively RFQI), where the number of basis functions does not
grow in d. The computed prices of RLSM are at most 2.1% smaller than those of LSM and the prices of
RFQI are at most 0.6% smaller than those of FQI. For d ≤ 100 the maximal relative errors compared to
the reference prices are 16.3% for LSM, 2.4% for DOS, 10.8% for NLSM, 6.1% for RLSM, 1.3% for FQI and
0.8% for RFQI. For d ≥ 500 these errors are 6.4% for DOS, 12.5% for NLSM, 2.9% for RLSM and 0.5%
for RFQI. The results of Table 2 (max call on Heston with variance and payoff as additional input) and
Table 3 (basket call on Black-Scholes) are similar, except that relative errors become larger in Table 3
for growing d, since the prices become very small.

In the remaining examples, it is in general not optimal to exercise the options at maturity, making the

null eth-zurich

Page 24

stopping decisions harder and therefore more challenging for the algorithms.

For the geometric put options (Table 4), we do not present dimensions larger than 100, because prices
cannot be computed numerically any more. In the Black-Scholes case, the maximal relative errors
compared to the reference price are 35.7% for LSM, 2.1% for DOS, 29.9% for NLSM, 6% for RLSM, 1.1%
for FQI and 0.5% for RFQI. Again, the prices computed with RLSM (respectively RFQI) are never much
smaller than those of LSM (FQI); 0.3% (0.1%) for Black-Scholes and 6% (0.6%) for Heston (with variance).
On the Heston model, RFQI, FQI and DOS achieve the highest prices that never deviate more than 1.5%
from each other.

For the min put option on Black-Scholes (Table 5) RLSM is about 7 times faster than NLSM and more
than 30 times faster than DOS for high dimensions. Furthermore RFQI is again about twice as fast as
RLSM. For d ≤ 50 all algorithms yield very similar prices and for larger d the highest prices are always
achieved by RFQI, whereby the prices computed with RFQI never deviate more than 1% from those
computed with FQI. Moreover, the prices computed with RLSM are never more than 1.9% smaller than
those computed with LSM. In addition, RLSM achieves the second highest prices for high dimensions.
For the max call option with dividends on Black-Scholes (Table 6 and Figure 2), the situation is similar.
However, the highest prices are always achieved by RFQI and the prices computed with RLSM are at
most 1.1% smaller than those of LSM. For the min put option on Heston (with variance and payoff as
additional input) (Table 7) we have similar results as on Black-Scholes, but the prices computed with
RLSM (RFQI) are at most 0.5%(0.2%) smaller than those computed with LSM (FQI).

For the max call option with dividend on Heston (with variance) (Table 8), RLSM is about 7 times faster
than NLSM and more than 26 times faster then DOS for high dimensions. RFQI is again about twice
as fast as RLSM. For d ∈ {5, 10} DOS yields the highest prices, RLSM deviates at most than 1.2% from
them and RFQI at most 6%. FQI yields lower prices than RFQI. For d ∈ {50, 100}, DOS, RLSM and RFQI
yield very similar prices deviating at most 2% from each other. For higher dimensions of d ≥ 500, RFQI
yields the highest and RLSM the second highest prices.

When increasing the number of exercise dates for the maxcall option on Black-Scholes fromN = 10 to
N ∈ {50, 100} (Table 9) the Bermudan option price should become closer to the American option
price. The highest prices are achieved either by RFQI, FQI or DOS, with a maximum deviation of less
than 1.4% between their results and a maximum deviation from the reference prices of 1.6% for DOS
and 1.5% for RFQI. RFQI is more than 30 times faster than DOS for high dimensions. Increasing the
number of dates further, the computation time can become a limiting factor for DOS, while this is not
the case for RFQI. We see similar results for the more complex maxcall option on Black-Scholes with
dividends (Table 10), where RFQI always achieves the highest price.

null eth-zurich

Page 25

Computation of Greeks

The Greeks are the sensitivities of the option price to a small change in a given underlying parameter.
In particular, they are partial derivatives of the option prices with respect to different parameters, such
as the spot price, time, rate and volatility. We provide experiments

(and the code) where we compute the most popular Greeks: delta
(

∂p0
∂x0

)
, gamma

(
∂2p0
∂x2

0

)
, theta

(
∂p0
∂t

)
,

rho
(

∂p0
∂r

)
and vega

(
∂p0
∂σ

)
. The straight forward method to compute them is via the finite difference

(FD) method. For theta, rho and vega, the standard forward finite difference method can be used with
our algorithms, however, they turn out to be unstable for NLSM and DOS. Therefore, we use the central
finite difference method, where the exercise boundary is frozen to be the one of the central point and
report results only with this method. For

Table 11: Prices and Greeks computed for different strikesK of a 1-dimensional put option on Black-
Scholes. For the binomial (B) algorithm, the spacing of the FD method is set to ε = 10−9, which is also
used for the other algorithms for delta, theta, rho and vega. For the regression method, ϵ = 5 and a
polynomial basis up to degree 9 are used.

computing delta we use the same method, since the others are unstable for all algorithms. Moreover,
the computation of gamma, as a second derivative, turns out to be unstable when computed with the
second order finite difference method, even when using the same technique as for delta. Therefore,
we use two alternative ways to circumvent this instability. The first one (PDE method) is specific to the
case of an underlying Black-Scholes model, where the Black-Scholes PDE

∂p0
∂t

+ 1
2σ

2x2
0
∂2p0
∂x2

0
+ rx0

∂p0
∂x0
− rp0 = 0

can be used to express gamma in terms of the price, delta and theta. The second one (regression
method) is the “naive method” suggested in (Létourneau and Stentoft, 2019, Section 3.1). It fits a

null eth-zurich

Page 26

polynomial regression to option prices achieved when distorting the initial price x0 by a noise term
ξ ∼ N

(
0, ϵ2

)
. Then the price, delta and gamma can easily be computed by evaluating the fitted

regression and its first and second derivative (which are easily computed, since polynomial regression
is used) at the initial pricex0. The parameter ϵ controls the variance-bias trade-off and has to be chosen
by hand. However, the authors also suggested a 2-step method that reduces variance and bias, where
this parameter is chosen automatically.

For comparability, we compute the Greeks for the same example as in (Létourneau and Stentoft, 2019).
In particular, we consider a put option on d = 1 stock following a Black-Scholes model with initial
price x0 = 40, strikeK ∈ {36, 40, 44}, rate r = 6%, volatility σ = 20%, N = 10 equidistant dates and
m = 100′000 paths. The models are run 10 times and mean and standard deviations are reported in
Table 11. The price, delta and gamma are computed with both, the finite difference (respectively PDE)
and the regression method. As reference we use the binomial model with N = 50′000 equidistant
dates, for which only the finite difference (respectively PDE) method is used. The hidden size was
set to 10 to account for the smaller input dimension and the payoff was not used as input except for
DOS, where it improved the results considerably. For RLSM the activation function was changed to
Softplus, since this worked best, although all other tested activation functions did also yield good
results. Overall, RLSM and DOS with the regression method achieve the best results. Furthermore,
we highlight, that the time advantage of RLSM and RFQI also comes into play for the computation of
Greeks, when increasing the dimension d.

Empirical Convergence Study

We confirm the theoretical results of Theorem 3 (Figure 3 left) and Theorem 2 (Figure 3 right) by
an empirical convergence study for a growing number of paths m. For RLSM we also increase
the number of hidden nodes K, while they are fixed for RFQI since d = 5 is used. For each
combination of the number of paths m and the hidden size K, the algorithms are run 20 times
and their mean prices with standard deviations are shown. For small m, we see that smaller
hidden sizes achieve better prices. This is due to overfitting to the training paths when using
larger networks. Regularization techniques like L1 - or L2-penalization could be used to reduce
overfitting for larger networks. However, our results suggest that restricting the hidden size is actually
the simplest and best regularization technique, since it additionally leads to lower training times.

null eth-zurich

Page 27

Figure 3: Mean± standard deviation (bars) of the price for a max call on 5 stocks following the Black-
Scholes model for RLSM (left) and RFQI (right) for varying the number of pathsm and varying for RLSM
the number of neurons in the hidden layerK.

The Non-Markovian Case - Optimally Stopping Fractional Brownian Motions

In order to compare our algorithms on a problem where the underlying process is nonMarkovian,
we take the example of the fractional Brownian motion

(
WH

t

)
t≥0

as in (Becker et al., 2019). Unlike
classical Brownian motion, the increments of fractional Brownian motion need not be independent.
Fractional Brownian motion is a continuous centered Gaussian process with covariation function
E
(
WH

t WH
s

)
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
whereH ∈ (0, 1] is called the Hurst parameter. When

the Hurst parameterH = 0.5, thenWH is a standard Brownian motion; whenH ̸= 0.5, the increments
of
(
WH

t

)
t≥0

are correlated (positively if H > 0.5 and negatively if H < 0.5) which means that for

H ̸= 0.5,
(
WH

t

)
t≥0

is not Markovian (Bayer et al., 2016; Livieri et al., 2018; Gatheral et al., 2018; El
Euch et al., 2018; Abi Jaber and El Euch, 2019).

Stock Model, Payoffs and Baselines

In this section we use a d-dimensional fractional Brownian motion, with independent coordinates
all starting at X0 = 0, as the underlying process Xt = WH

t . In contrast to the price processes we
used before, this process can become negative. In the one-dimensional case, we use the identity
as “payoff” function g = id as in (Becker et al., 2019), which can lead to negative “payoff” values.
Moreover, we use the maximum g(x) = max (x1, x2, . . . , xd) for any x = (x1, x2, . . . , xd) ∈ Rd and
the mean g(x) = 1/d

∑d
i=1 xi as “payoffs” for higher dimensions, which can also yield negative values.

In particular, this setting leads to an optimal stopping problem outside of the standard discretized
American option pricing setting. We compare RLSM and RRLSM to DOS and the path-version of DOS

null eth-zurich

Page 28

(denoted pathDOS for our implementation of it and pathDOS-paper for results reported from (Becker et
al., 2019)), where the entire path until the current date is used as input (Becker et al., 2019). Moreover,
we test RFQI and its recurrent and path-version in this setting.

For two values of the Hurst parameter the optimal value can be computed explicitly. In particular, for
H = 0.5 we have a Brownian motion and therefore the optimal value is 0 and forH = 1 we have a
fully correlated process (i.e. all information is known after the first step), where the optimal value is
approximately 0.39495 (Becker et al., 2019).

Results and Discussion

For d = 1, we clearly see the outperformance of the algorithms processing information of the path
compared to the ones using only the current value as input (Figure 4 top left). Moreover, this application
highlights the limitation of reinforcement learning techniques when applied in non-Markovian settings
as discussed in (Kaelbling et al., 1996). In particular, RFQI, the randomized RNN version of it and
its path-version do not work well in this example (Figure 4 top right). This poor performance was
consistent under varying hyper-parameters.

RRLSM achieves very similar results to those reported for pathDOS in (Becker et al., 2019) with an MSE
of 0.0005 between their reported values and ours, while using only 20 K instead of 4M paths (Figure
4 bottom). RRLSM needs only 1s to be trained in contrast to 430s reported in (Becker et al., 2019).
The longer training times can partly be explained by the larger amount of paths used. However, our
implementation of pathDOS using the same number of 20 hidden nodes as RRLSM and also being
trained on 20K paths (hence completely comparable to the training of RRLSM) takes approximately
175 s and achieves slightly worse results than RRLSM (Figure 4 top left) with an MSE of 0.0018. The
exact prices displayed in Figure 4 are provided in Appendix C.1.

For higher dimensions, we use the small Hurst parameter H = 0.05 for which a big differ-
ence between the standard and the path dependent algorithms was visible in the onedimen-
sional case. RFQI yields very similar prices as DOS and RRLSMyields very similar prices as
pathDOS. However, RFQI and RRLSM are considerably faster than DOS and pathDOS (Table 12).

null eth-zurich

Page 29

Figure 4: Top left: algorithms processing path information outperform. Top right: reinforcement
learning algorithms do not work well in non-Markovian cases. Bottom: RRLSM achieves similar results
as reported in (Becker et al., 2019), while using only 20 K paths instead of 4M for training which took
only 1s instead of the reported 430s.

price duration
payoff d DOS pathDOS RLSM RRLSM DOS pathDOS RLSM RRLSM

Identity 1 0.67(0.02) 1.24(0.01) 0.65(0.01) 1.24(0.01) 1 m15 s 3 m1 s 0 s 1 s
Max 5 1.96(0.01) 2.15(0.01) 2.00(0.01) 2.16(0.01) 3 m8 s 21 m46 s 4 s 1 s

10 2.34(0.01) 2.43(0.01) 2.40(0.01) 2.43(0.02) 3 m49 s 37 m46 s 4 s 2 s

Mean
5 0.29(0.01) 0.53(0.00) 0.28(0.01) 0.52(0.01) 3 m40 s 21 m8 s 3 s 1 s

10 0.20(0.01) 0.36(0.00) 0.21(0.01) 0.33(0.01) 3 m39 s 36 m1 s 5 s 1 s

Table 12: Identity, maximum and mean on the fractional Brownian motion withH = 0.05 and different
number of stocks d.

null eth-zurich

Page 30

Non-Markovian Stock Models

In Section 6.3 we saw that the RL based algorithms do not perform well on problems which are highly
path dependent. In this section, we consider “intermediate” problems of typical non-Markovian stock
models, where a path dependence exists, but where this path dependence is not very strong.

Heston Without Variance as Input

First, we revisit the Heston model (9), but this time without feeding the algorithms the variance, which
makes it a non-Markovian problem. For the max call (Table 16), min put (Table 17) and max call with
dividend (Table 18) options on Heston without variance, all the algorithms yield very similar prices as
on Heston with variance (Tables 2, 7 and 8), therefore we do only show the tables in Appendix C.2. In
particular, this suggests that even though the Heston model is not Markovian without providing the
current variance, this doesn’t make a difference for option pricing.

Rough Heston

Moreover, we test on the rough Heston model, where the variance itself is path-dependent. This model
recently became a very popular choice for modelling financial markets (El Euch and Rosenbaum, 2018;
El Euch et al., 2019; Gatheral et al., 2020). The rough Heston model (El Euch and Rosenbaum, 2018) is
defined as

dXt = (r − δ)Xtdt+
√
vtXtdWt

vt = v0 +
∫ t

0

(t− s)H−1/2

Γ(H + 1/2) κ (v∞ − vs) ds+
∫ t

0

(t− s)H−1/2

Γ(H + 1/2) σ
√
vsdBs

whereX0 = x0, the Hurst parameterH ∈ (0, 1/2) and (Wt)t≥0 and (Bt)t≥0 are two d dimensional
Brownian motions correlated with coefficient ρ ∈ (−1, 1). We choose the drift r = 5%, the dividend
rate δ = 10%, the volatility of volatility σ = 20%, the long term variance v∞ = 0.01, the mean
reversion speed κ = 2, the correlation ρ = −30%, the initial stock price x0 = 100 and the initial
variance v0 = 0.01 and consider a max call option on the stock priceX .

As for the Heston model, also for the rough Heston model there is no significant difference between the
computed prices with and without providing the current variance, therefore we only show prices where
the current variance was also fed to the algorithms, which is still a non-Markovian setting. For the max
call option on the rough Heston model (with variance) (Table 13), we see again that the reinforcement
learning based algorithms FQI and RFQI do not work well.

null eth-zurich

Page 31

Overall, DOS, NLSM, RLSM and RRLSM achieve very similar prices, never deviating more than 2.2%
from each other. In particular, we do not see a better performance of the path dependent algorithms
pathDOS and RRLSM compared to DOS and RLSM.

Table 13: Max call option on Rough-Heston for different number of stocks d. The interest rate is r = 5%
and the dividend rate is δ = 10%.

Discussion on the Sensitivity of the Randomness of the Hidden Layers

We perform a test specifically designed to study the model’s sensitivity to the randomness of the
weights of the hidden layers. In our previous tests in this paper we performed 10 runs, where a different
set of paths and different weights of the hidden layer were chosen for each run. In order to test the
sensitivity to the randomness of the weights, we perform an experiment with 10 runs, where only the
set of hidden weights are different for each run, while the paths are the same.

We compare RLSM and NLSM in the setting of a 1-dimensional Black-Scholes call option with spot
x0 = 100 and strikeK = 100, where we use 100 K paths and 10 exercises dates with 20 hidden nodes
and either 10, 30 or 50 epochs of training for NLSM.

In order to have a fair comparison, we do not fix the initial weights of NLSM, as it would be equivalent
to reusing the same random weights for RLSM in each run, with the possibility of having a good or
bad initialisation. Hence, similar to RLSM’s sensitivity to the randomness of the weights in the hidden
layer, NLSM is sensitive to the randomness in the initialization of the weights (of the hidden layer).
In order to reduce this sensitivity in the algorithms, one should always take the average of several
runs with different sets of weights (and paths). This can be easily done in parallel in order to reduce
the computation time. The results of this sensitivity analysis are given in Table 14 . We see that the
sensitivity of NLSM to the randomness of the initialization depends on the number of epochs of the
training, becoming smaller with longer training.

In order to further reduce the sensitivity of RLSM to the randomness of the hidden layer weights we
propose a variant of it, which we call RLSMreinit. Instead of using the same random weights for each
date, we use different ones, which have an averaging effect and therefore reduce the variance in
multiple runs.

null eth-zurich

Page 32

Table 14: Prices and Greeks for NLSM (with different number of training epochs), RLSM and RLSMreinit
with standard deviations computed over 10 runs with different initializations on the same set of paths.

Conclusion

Based on a broad study of machine learning based approaches to approximate the solution of optimal
stopping problems, we introduced two simple and powerful approaches, RLSM and RFQI. As state-of-
the-art algorithms, they are very simple to implement and have convergence guarantees. Moreover,
similarly to the neural network methods, they are easily scalable to high dimensions and there is no
need to choose basis functions by hand. Furthermore, in our empirical study we saw that RLSM and
RFQI are considerably faster than existing algorithms for high dimensional problems. In particular, up
to 2400 (and 4800) times faster than LSM (and FQI respectively) with basis functions of order 2, 5 to 16
times faster than NLSM and 20 to 66 times faster than DOS.

In our Markovian experiments, RFQI often achieves the best results and if not, usually is very close to
the best performing baseline method under consideration, reconfirming that reinforcement learning
methods surpass backward induction methods.

In our non-Markovian experiments on fractional Brownian Motion, our randomized recurrent neural
network algorithm RRLSM achieves similar results as the path-version of DOS, while requiring less
training data and being much faster. However, this example also brought up the limitations of reinforce-
ment learning based approaches, in particular of RFQI, which do not work well in those non-Markovian
experiments.

In our non-Markovian experiments on rough Heston, we concluded that there is no need of using a
recurrent neural network, since RLSM has similar results as RRLSM. This is also the case with DOS and
pathDOS.

Overall, the speed of our algorithms is very promising for applications in high dimensions and with
many discretization times, where existing methods might become impractical and where our methods
show very reliable performance. To summarize, we suggest to use RFQI for Markovian problems, RLSM
for non-Markovian processes which do not have a strong path-dependence, as the stock price of rough
Heston and finally RRLSM for non-Markovian processes which have a strong path-dependence like
fractional Brownian Motion.

null eth-zurich

Page 33

Acknowledgments

The authors would like to thank Sebastian Becker, Patrick Cheredito, Blanka Horvath, Arnulf Jentzen,
Hartmut Maennel and Louis Paulot for helpful feedback and discussions. In addition, we would like to
warmly thank the quant team of Crédit Agricole CIB, and in particular Arthur Semin, Ryan Kurniawan
and Wail El Allali for the great collaboration we had which considerably improved our paper. Thanks to
this collaboration, in this current version, we provide the computation of the greeks, we improved the
sensitivity to the randomness of the hidden layers of RLSM and we improved the proof of convergence
of RLSM. Moreover, the authors would like to acknowledge support for this project from the Swiss
National Science Foundation (SNF grant 179114).

References

Eduardo Abi Jaber and Omar El Euch. Multifactor Approximation of Rough Volatility Models. SIAM
Journal on Financial Mathematics, 10(2):309-349, 2019.

Leif Andersen. A Simple Approach to the Pricing of Bermudan Swaptions in the Multi-Factor Libor
Market Model. Mathematical Finance, 3(2):5-32, 1999.

Andrew Bakan. Representation of Measures with Polynomial Denseness inLp(R, dµ), 0 < p <∞, and
its Application to Determinate Moment Problems. Proceedings of the American Mathematical Society,
136(10):3579-3589, 2008.

Vlad Bally and Gilles Pagès. A Quantization Algorithm for Solving Multi-Dimensional Discrete-Time
Optimal Stopping Problems. Bernoulli, 9(6):1003-1049, 2003.

Vlad Bally, Gilles Pagès, and Jacques Printems. A Quantization Tree Method for Pricing and Hedging
Multidimensional American Options. Mathematical Finance, 15(1):119-168, 2005.

Peter Bank and David Besslich. On Lenglart’s Theory of Meyer-sigma-fields and El Karoui’s Theory of
Optimal Stopping. arXiv:1810.08485, 2019.

Jérôme Barraquand and Didier Martineau. Numerical Valuation of High Dimensional Multivariate
American Securities. The Journal of Financial and Quantitative Analysis, 30 (3):383-405, 1995.

Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under Rough Volatility. Quantitative Finance,
16(6):887-904, 2016.

Christian Bayer, Martin Eigel, Leon Sallandt, and Philipp Trunschke. Pricing HighDimensional Bermudan
Options with Hierarchical Tensor Formats. arXiv:2103.01934, 2021.

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep Optimal Stopping. Journal of Machine
Learning Research, 20:74, 2019.

null eth-zurich

Page 34

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Pricing and Hedging American-Style Options
with Deep Learning. Journal of Risk and Financial Management, 2020.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996. Bruno
Bouchard and Xavier Warin. Monte-Carlo Valuation of American Options: Facts and New Algorithms to
Improve Existing Methods. Numerical Methods in Finance, pages 215− 255, 2012.

Phelim P. Boyle, Adam W. Kolkiewicz, and Ken Seng Tan. An improved simulation method for pricing
high-dimensional american derivatives. Mathematics and Computers in Simulation, 62(3) : 315 −
322, 2003.

Mark Broadie and Paul Glasserman. A stochastic mesh method for pricing high-dimensional american
options. Journal of Computational Finance, 7(4):35-72, 2004.

Weipeng Cao, Xizhao Wang, Zhong Ming, and Jinzhu Gao. A Review on Neural Networks with Random
Weights. Neurocomputing, 275:278-287, 2018.

Jacques F. Carriere. Valuation of the Early-Exercise Price for Options using Simulations and Nonpara-
metric Regression. Insurance: Mathematics and Economics, 19(1):19-30, 1996.

Shuhang Chen, Adithya M Devraj, Ana Bušić, and Sean Meyn. Zap Q-Learning for Optimal Stopping.
IEEE American Control Conference (ACC), pages 3920-3925, 2020.

Etienne Chevalier, Sergio Pulido, and Elizabeth Zúñiga. American Options in the Volterra Heston Model.
arXiv:2103.11734, 2021.

Emmanuelle Clément, Damien Lamberton, and Philip Protter. An Analysis of the LongstaffSchwartz
Algorithm for American Option Pricing. Technical report, Cornell University Operations Research and
Industrial Engineering, 2001.

John C Cox, Stephen A Ross, and Mark Rubinstein. Option Pricing: A Simplified Approach. Journal of
financial Economics, 1979.

Daniel Egloff. Monte Carlo Algorithms for Optimal Stopping and Statistical Learning. The Annals of
Applied Probability, 15(2):1396-1432, 2005.

Daniel Egloff, Michael Kohler, and Nebojsa Todorovic. A Dynamic Look-Ahead Monte Carlo Algorithm
for Pricing Bermudan Options. The Annals of Applied Probability, 17(4): 1138− 1171, 2007.

Omar El Euch and Mathieu Rosenbaum. Perfect Hedging in Rough Heston Models. The Annals of
Applied Probability, 28(6):3813-3856, 2018.

Omar El Euch, Masaaki Fukasawa, and Mathieu Rosenbaum. The Microstructural Foundations of
Leverage Effect and Rough Volatility. Finance and Stochastics, 22(2):241-280, 2018.

Omar El Euch, Jim Gatheral, and Mathieu Rosenbaum. Roughening Heston. Risk Management &
Analysis in Financial Institutions eJournal, 2019.

null eth-zurich

Page 35

Nicole El Karoui. Les Aspects Probabilistes du Controle Stochastique. Ecole d’Eté de Probabilités de
Saint-Flour IX-1979, 1981. Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in
Discrete Time. De Gruyter, 2016.

Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep Reservoir Computing: A Critical Experimen-
tal Analysis. Neurocomputing, 268:87 - 99, 2017.

Diego Garcia. Convergence and Biases of Monte Carlo Estimates of American Option Prices using a
Parametric Exercise Rule. Journal of Economic Dynamics and Control, 27(10): 1855− 1879, 2003.

Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is Rough. Quantitative Finance,
18(6):933-949, 2018.

Jim Gatheral, Paul Jusselin, and Mathieu Rosenbaum. The Quadratic Rough Heston Model and the
Joint S&P 500/VIX Smile Calibration Problem. arXiv:2001.01789, 2020.

Emmanuel Gobet, Jean-Philippe Lemor, and Xavier Warin. A Regression-Based Monte Carlo Method to
Solve Backward Stochastic Differential Equations. The Annals of Applied Probability, 15(3):2172-2202,
2005.

L. Gonon and J. Ortega. Reservoir Computing Universality With Stochastic Inputs. IEEE Transactions
on Neural Networks and Learning Systems, 31:100-112, 2020.

Alexander N. Gorban, Ivan Yu. Tyukin, Danil V. Prokhorov, and Konstantin I. Sofeikov. Approximation
with Random Bases: Pro et Contra. Information Sciences, 364-365:129-145, 2016.

Hamza Hanbali and Daniel Linders. American-Type Basket Option Pricing: a Simple Two-Dimensional
Partial Differential Equation. Quantitative Finance, 19(10):1689-1704, 2019.

Martin B. Haugh and Leonid Kogan. Pricing American Options: A Duality Approach. Operations Re-
search, 52(2):258-270, 2004.

Steven L. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to
Bond and Currency Options. The review of financial studies, 6(2):327-343, 1993.

Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural networks,
4(2):251-257, 1991.

Guang-Bin Huang, Lei Chen, Chee Kheong Siew, et al. Universal Approximation using Incremental Con-
structive Feedforward Networks with Random Hidden Nodes. IEEE Transactions on Neural Networks,
17(4):879-892, 2006.

Shashi Jain and Cornelis W. Oosterlee. The Stochastic Grid Bundling Method: Efficient Pricing of
Bermudan Options and their Greeks. Applied Mathematics and Computation, 269:412-431, 2015.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement Learning: A Survey.
Journal of artificial intelligence research, 4:237-285, 1996. Michael Kohler, Adam Krzyżak, and N

null eth-zurich

Page 36

Zaklina Todorovic. Pricing of High-Dimensional American Options by Neural Networks. Wiley-Blackwell:
Mathematical Finance, 2010.

Anastasia Kolodko and John Schoenmakers. Iterative Construction of the Optimal Bermudan Stopping
Time. Finance and Stochastic, 10:27-49, 2004.

Bernard Lapeyre and Jérôme Lelong. Neural Network Regression for Bermudan Option Pricing. Monte
Carlo Methods and Applications, 2021.

Pascal Létourneau and Lars Stentoft. Simulated Greeks for American Options. Available at SSRN
3503889, 2019.

Yuxi Li, Csaba Szepesvari, and Dale Schuurmans. Learning Exercise Policies for American Options. In
International Conference on Artificial Intelligence and Statistics, 2009.

Giulia Livieri, Saad Mouti, Andrea Pallavicini, and Mathieu Rosenbaum. Rough Volatility: Evidence from
Option Prices. IISE transactions, 50(9):767-776, 2018.

Francis A. Longstaff and Eduardo S. Schwartz. Valuing American Options by Simulation: A Simple
Least-Squares Approach. Review of Financial Studies, 2001.

Mantas Lukoševičius and Herbert Jaeger. Reservoir Computing Approaches to Recurrent Neural Net-
work Training. Computer Science Review, 3(3):127-149, 2009.

Gilles Pagès. Numerical Probability: An Introduction with Applications to Finance. Springer, 2018.

Huyên Pham. Optimal Stopping, Free Boundary, and American Option in a Jump-Diffusion Model.
Applied Mathematics and Optimization, 1997.

Chris Rogers. Monte Carlo Valuation of American Options. Mathematical Finance, 12(3): 271 −
286, 2002.

Chris Rogers. Dual Valuation and Hedging of Bermudan Options. SIAM Journal on Financial Mathemat-
ics, 1(1):604-608, 2010.

Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent Neural Networks are Universal
Approximators. In Artificial Neural Networks - ICANN 2006, pages 632-640. Springer Berlin Heidelberg,
2006.

Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An Overview of Reservoir Comput-
ing: Theory, Applications and Implementations. In European Symposium on Artificial Neural Networks,
pages 471-482, 2007.

Martin Schweizer. On bermudan options. Advances in Finance and Stochastics: Essays in Honour of
Dieter Sondermann, 2002.

Lars Stentoft. Convergence of the Least Squares Monte Carlo Approach to American Option Valuation.
Management Science, 50(9):1193-1203, 2004. Richard S. Sutton and Andrew G. Barto. Reinforcement

null eth-zurich

Page 37

Learning: An Introduction. MIT press, 2018.

James A. Tilley. Valuing American Options in a Path Simulation Model. In Transactions of the Society of
Actuaries, 1993.

John Tsitsiklis and Benjamin Van Roy. Optimal Stopping of Markov Processes: Hilbert Space Theory,
Approximation Algorithms, and an Application to Pricing High-Dimensional Financial Derivatives. IEEE
Transactions on Automatic Control, 44:1840-1851, 1997.

John Tsitsiklis and Benjamin Van Roy. Regression Methods for Pricing Complex AmericanStyle Options.
IEEE Transactions on Neural Networks, 12(4):694-703, 2001.

David Verstraeten, Benjamin Schrauwen, Michiel d’Haene, and Dirk Stroobandt. An Experimental
Unification of Reservoir Computing Methods. Neural Networks, 20(3):391-403, 2007.

Huizhen Yu and Dimitri P. Bertsekas. Q-Learning Algorithms for Optimal Stopping Based on Least
Squares. European Control Conference, 2007.

Daniel Zanger. Quantitative Error Estimates for a Least-Squares Monte Carlo Algorithm for American
Option Pricing. Finance and Stochastics, 17, 072013.

Daniel Z Zanger. Convergence of a Least-Squares Monte Carlo Algorithm for Bounded Approximating
Sets. Applied Mathematical Finance, 16(2):123-150, 2009.

Daniel Z Zanger. Convergence of a Least-Squares Monte Carlo Algorithm for American Option Pricing
with Dependent Sample Data. Mathematical Finance, 28(1):447-479, 2018.

Daniel Z. Zanger. General Error Estimates for the Longstaff-Schwartz Least-Squares Monte Carlo Algo-
rithm. 45(3), 2020.

Rui Zhang, Yuan Lan, Guang-Bin Huang, and Zong-Ben Xu. Universal Approximation of Extreme Learning
Machine With Adaptive Growth of Hidden Nodes. IEEE Transactions on Neural Networks and Learning
Systems, 23(2):365-371, 2012.

Appendix A. Convergence of the Randomized Least Square Monte Carlo
(RLSM)

We first introduce some technical notation that will be helpful for the proofs. Then we describe the steps
from the theoretical idea of RLSM to its implementable version that was presented in Section 2.7. These
descriptions and proofs are based on (Tsitsiklis and Van Roy, 2001; Clément et al., 2001), in particular,
our theoretical results are a direct consequence of these works and the universal approximation
theorem of Zhang et al. (2012). Nevertheless, we give a detailed description here for completeness.

null eth-zurich

Page 38

A.1 Definitions

We assume to have a sequence of infinitely many random basis functions ϕ = (ϕk)k≥1, where each ϕk

is of the form

ϕk : Rd → R, x 7→ ϕk(x) := σ
(
α⊤

k x+ βk

)
,

with σ a bounded activation function, αk ∈ Rd and βk ∈ R. The parameters αk and βk have i.i.d.
entries with a standard Gaussian distribution, hence the name random basis functions. With (Ω̃, F̃ , P̃)
we denote the probability space on which the random weights are defined. For eachK ∈ N we define
the operator ΦK acting on θ = (θ1, . . . , θK) ∈ RK by

(ΦKθ) (x) := θ⊤ϕ(x) :=
K∑

k=1
θkϕk(x).

In particular, ΦK is the operator producing a linear combination of the firstK random basis functions.
We assume to have a Markovian, discrete time stochastic process X = (X0, . . . , XN) defined on a
filtered probability space

(
Ω,F , (Fn)N

n=0 ,P
)

. In particular, each Xn is a Fn− measurable random
variable. We assume that there exists an absolutely continuous measure Q≪ P, the pricing measure,
and that the distribution ofXn under Q is πn. For expectations with respect to these random variables
under Q, we write E[·]. For 0 ≤ n ≤ N we use the norm

∥f∥2πn
:= E

[
|f (Xn)|22

]
=
∫
R
|f(x)|22dπn(x),

where | · |2 is the Euclidean norm and f a measurable function. We introduce the operatorsEn and
ΠK

n defined by

(EnJ) (x) := E [J (Xn+1) | Xn = x] ,(
ΠK

n J
)

:= arg min
ΦKθ
∥J − ΦKθ∥πn

for J ∈ L2 (πn). With Ên we denote the one-sample approximation of En, i.e.
(
ÊnJ

)
(Xn) =

J (Xn+1), which is better understood in terms of a realization of x = (x0, . . . , xN) of X as(
ÊnJ

)
(xn) = J (xn+1). Moreover, Π̂K

n is the Monte Carlo approximation of ΠK
n , i.e. if x1

n, . . . , x
m
n are

i.i.d. samples of πn, then
(
Π̂K

n J
)

:= arg minΦKθ
1
m

∑m
i=1

(
J
(
xi

n

)
− (ΦKθ)

(
xi

n

))2. In the following,
we write Πn and Π̂n wheneverK is fixed.

The payoff at any exercise time n is given by g (Xn) and we assume that they are square integrable,
i.e. ∥g (Xn)∥πn

<∞.

null eth-zurich

Page 39

A.2 Theoretical Description of RLSM

We first introduce the exact algorithm to compute the continuation value and then give definitions of the
2-step approximation of this exact algorithm. The first step is to introduce projections on the subspace
of functions spanned by ΦK , while assuming that (conditional) expectations can be computed exactly.
We call this the idealized algorithm. We remark that also the projection itself is based on minimizing
an expectation. The second step is to introduce Monte Carlo and one-sample approximations of the
projections and (conditional) expectations using m sample paths. This we call the implementable
algorithm, since it can actually be implemented. Our goal is then to show that the price computed
with those two approximation steps converges to the true price, whenK andm increase to infinity.

A.2.1 Exact Algorithmic

The continuation value is the expected discounted payoff at the current time conditioned on a decision
not to exercise the option now. The exact algorithmic definition of the continuation value is defined
backwards step-wise as in (Tsitsiklis and Van Roy, 2001) as

QN−1 := αEN−1g

Qn := αEn max (g,Qn+1) .

A.2.2 Idealized Algorithm

Our idealized algorithm to compute the continuation value, written similar as in (Tsitsiklis and Van Roy,
2001), is defined for fixedK as

Q̃
K
N−1 := αEN−1P

K
N

Q̃K
n := αEnP

K
n+1

where

P
K
N := g

PK
n := g1g≥αΠK

n EnP K
n+1

+ αEnP
K
n+11g<αΠK

n EnP K
n+1

.

In particular,PK
n can be interpreted as the choice of the algorithm at time step n, to either execute and

take the payoff or to continue with the expected discounted future payoff. We drop the superscriptK

null eth-zurich

Page 40

whenever it is clear from the context whichK is meant. We see from this equation, that the difference
from the idealized algorithm in (Tsitsiklis and Van Roy, 2001, described in (1) and before Theorem 1) is,
that we use the Q̃n+1 instead of its linear approximation with the random basis functions ΠnQ̃n+1, if
we decide to continue. However, the decision to continue or to stop, is still based on the approximation
ΠnQ̃n+1 as it is also the case in the idealized algorithm (Tsitsiklis and Van Roy, 2001). If the linear
approximation is exact, both algorithms produce the same output, but if it is not exact, our algorithm
uses a better approximation of the continuation value.

A.2.3 Implementable Algorithm

Finally, we define our implementable algorithm to compute the continuation value, which is an ap-
proximation of the idealized algorithm using the approximations Ên and Π̂K

n as

ˆ̃QK

N−1 := αÊN−1P̂
K
N

ˆ̃QK
n := αÊnP̂

K
n+1

where

P̂
K
N := g

P̂K
n := g1g≥αΠ̂K

n ÊnP̂ K
n+1

+ αÊnP̂
K
n+11g<αΠ̂K

n ÊnP̂ K
n+1

Also here we drop the superscriptK whenever it is clear from the context whichK is meant.

A.3 Preliminary Results

The following result is proven in (Zhang et al., 2012, Theorem 3) and states, that the error of the
approximation of any integrable function by randomized neural networks converges P̃-a.s. to 0 as
the number of hidden nodes goes to infinity, where P̃ is the probability measure associated with the
random weights.

Theorem 4. Let 0 ≤ n ≤ N − 1 and J be an square integrable function, i.e. ∥J∥πn <∞, then

null eth-zurich

Page 41

A.4 Convergence Results

The price of the Bermudan approximation of the American option can be expressed with the exact
algorithm as

U0 := max (g (X0) , Q0 (X0)) ,

the price computed with the idealized algorithm is

UK
0 := max

(
g (X0) , Q̃K

0 (X0)
)

and the price computed with the implementable algorithm is

UK,m
0 := max

(
g (X0) , 1

m

m∑
i=1

ˆ̃QK
0

(
x0, x

i
1, . . . , x

i
N

))
.

We provide two different convergence results with two different assumptions. The first result is based
on (Clément et al., 2001) which needs a technical assumption that might not be satisfied in general.
The second result is based on (Zanger, 2020), which replaces this assumption by a stronger integrability
assumption on the payoff. A.4.1 Convergence Results based on Clément Et al. (2001)

Combining the following two results, convergence ofUK,mK
0 toU0 asK →∞ can be established by

choosing a suitable sequence (mK)K≥1, under the assumption that g (Xn) is square integrable for all
0 ≤ n ≤ N

Theorem 5. The idealized priceUK
0 converges to the correct priceU0P̃-a.s. asK →∞.

Theorem 6. We assume that Q
[
αΠK

n EnP
K
n+1 (Xn) = g (Xn)

]
= 0 for all 0 ≤ n ≤ N − 1. Then the

implementable priceUK,m
0 converges almost surely to the idealized priceUK

0 asm→∞.

The proofs are a direct consequence of Clément et al. (2001).

null eth-zurich

Page 42

Proof [Theorems 5 and 6] The proofs are implied by the results presented in (Clément et al., 2001,
Section 3). We only need to establish that their assumption A1 is satisfied. The assumption A2 is
actually not needed, as explained below.

Assumption A1 is that (ϕk (Xn))k≥1 is total in L2 (σ (Xn)) for every 1 ≤ n ≤ N − 1, which is used
to show that

∥∥∥ΠK
n Qn −Qn

∥∥∥
πn

converges to 0 . We replace this assumption by our Theorem 4, which
therefore yields P-almost sure convergence in the result.

Assumption A2 is that for every 1 ≤ n ≤ N and every K > 0, if
∑K

k=0 λkϕk (Xn) = 0 almost
surely, then all λk = 0. This assumption is actually only needed for the projection weights to be
uniquely defined, such that they can be expressed by the closed-form ordinary least squares formula.
Otherwise, if this assumption is not satisfied, there exist several weight vectors θ, which all define
the same projection ΦKθ minimizing the projection objective. By Gram-Schmidt, we can generate
an orthonormal basis

(
ϕ̃k

)
1≤k≤K̃(K)

of the linear subspace ofL2 that is spanned by (ϕk)1≤k≤K , with

K̃(K) ≤ K. By its definition,
(
ϕ̃k

)
1≤k≤K̃(K)

satisfies assumption A2 and therefore, the results of
(Clément et al., 2001, Section 3) can be applied. Finally, we note that the projections are the same,
no matter whether

(
ϕ̃k

)
1≤k≤K̃

or (ϕk)1≤k≤K are used to describe the space that is spanned. We
are interested in the convergence of the price. Considering the definition (12), we see that the price
depends only on the projection but not on the used weights. Therefore, we can conclude that the same
statements hold with our originally defined random basis functions (ϕk)1≤k≤K .

The technical assumption that Q
[
αΠK

n EnP
K
n+1 (Xn) = g (Xn)

]
= 0 for all 0 ≤ n ≤ N − 1 of the

result of Clément et al. (2001) that shows up in Theorem 6 is not always satisfied. In particular, it is
easy to construct examples of finite probability spaces, where this is not the case. Indeed, consider the
easiest possible case of probability space which is a singelton, with a (deterministic) constant stock
price without discounting, then Q

[
ΠK

n EnP
K
n+1 (Xn) = g (Xn)] = 1. Therefore, in the next section,

we provide a different proof based on the work of Zanger (2020), which replaces this assumption by a
slightly stronger integrability assumption on the payoff process.

A.4.2 Convergence Results Based On Zanger (2020)

After the work of Clément et al. (2001), improved theoretical guarantees to the original Least Squares
Monte Carlo algorithm (LSM) have been proposed, such as (Stentoft, 2004; Egloff, 2005; Gobet et al.,
2005). An important improvement of the convergence results is done in (Zanger, 2009, 2013, 2018,
2020). In particular, Zanger (2009) raised the issue that Clément et al. (2001) have additional restrictions
on the law of the underlying Markov process such as the assumption in Theorem 6 mentioned above.
Zanger (2009) proposed a generalized LSM algorithm and provides a proof of convergence in probability
(Zanger, 2009, Theorem 5.1). In this theorem, he does not need the condition of Clément et al. (2001),

null eth-zurich

Page 43

but needs the payoff to be almost surely bounded (Zanger, 2009, Definition 5.1 and 5.2). Zanger (2013)
provides error estimates (convergence rates), even when the underlying process and payoff process
are not necessarily inL∞. Later, Zanger (2018) provides a convergence result (Zanger, 2018, Corollary
5.5) without the assumption in Theorem 6 of Clément et al. (2001), but with a bounded payoff process.
However, this time, he provides almost sure convergence instead of convergence in probability. Finally,
in his last paper, Zanger (2020) replaces the assumption of having a bounded payoff process by a
condition on its moments (Zanger, 2020, Corollary 1). We use this last result to prove our second
convergence theorem.

Theorem 7. Assume that there exists some 2 < p ≤ ∞ such that

Mp := max
1≤n≤N

∥g (Xn)∥pLp <∞

and that all payoffs are non-negative. Moreover, assume that we use the truncated versions of the
payoffs g (Xn) in Algorithm 1 as well as the truncated versions of the randomized neural networks,
with truncation level 1 ≤ λ <∞. Then

E
[∣∣∣UK,m

0 − U0
∣∣∣] P̃−a.s.−→

K,m→∞
0,

when choosing λ = m1/8.

The proof is a direct consequence of (Zanger, 2020, Corollary 1).

Proof Let us fix the number of pathsm and the number of random basis functionsK. Then (Zanger,
2020, Corollary 1) implies that

E
[∣∣∣UK,m

0 − U0
∣∣∣] ≤ 6N

Cλ2
(√

νc0 log
1
2 (m) + log

1
2 (C0)

)
√
m

+4
√
ε+ max

n=1,...,N−1

(
inf

f∈BK,λ
n

∥f −Qn∥πn

)
+
(

8Mpλ
(2−p)

p− 2

)1/2
 ,

whereC0 = C (c0ν + 1)4 (Cλ4)2ν(1+c0)
, c0 = 2(N + 1) log2(e(N + 1)) andC is a numerical constant

with 1 ≤ C < ∞, and ε ≥ 0 as defined in (Zanger, 2020, Equation 13). Here, ν is the Vapnik-
Chervonenkis (VC) dimension of the set of randomized neural networks, which is finite according to
(Zanger, 2020, Remark 8). For each exercise time 1 ≤ n ≤ N − 1 the set BK,λ

n is defined to be the
set of all λ-truncated randomized neural networks using the firstK random basis functions (i.e. any
truncated version of a linear combinations of the basis functions (ϕk)1≤k≤K

)
. In particular

null eth-zurich

Page 44

BK,λ
n = {Tλf | f ∈ span {ϕ1, . . . , ϕK}} ,

where Tλ is the operator truncating a function at λ. Note that for any function f , we have that

∥∥∥(Tλf −Qn) 1{|Qn|<λ}

∥∥∥
πn

≤
∥∥∥(f −Qn) 1{|Qn|<λ}

∥∥∥
πn

Therefore,

inf
f∈BK,λ

n

∥∥∥(f −Qn) 1{|Qn|<λ}

∥∥∥
πn

≤ inf
f∈span{ϕ1,...,ϕK}

∥∥∥(f −Qn) 1{|Qn|<λ}

∥∥∥
πn

≤ inf
f∈span{ϕ1,...,ϕK}

∥f −Qn∥πn
=
∥∥∥ΠK

n Qn −Qn

∥∥∥
πn

Hence, we can now bound the approximation error with truncated randomized neural networks by

inf
f∈BK,λ

n

∥f −Qn∥πn
≤ inf

f∈BK,λ
n

(∥∥∥(f −Qn) 1{|Qn|<λ}

∥∥∥
πn

+
∥∥∥(f −Qn) 1{|Qn|≥λ}

∥∥∥
πn

)
≤ inf

f∈BK,λ
n

∥∥∥(f −Qn) 1{|Qn|<λ}

∥∥∥
πn

+ sup
f∈BK,λ

n

∥∥∥(f −Qn) 1{|Qn|≥λ}

∥∥∥
πn

≤
∥∥∥ΠK

n Qn −Qn

∥∥∥
πn

+ 2
∥∥∥Qn1{|Qn|≥λ}

∥∥∥
πn

,

where in the last inequality we used that functions in BK,λ
n are truncated at λ implying that they are

bounded by |Qn| on the set {|Qn| ≥ λ}. Moreover, we can choose ε = 1/m, replace λ = m1/8 and
simplify all expressions by using one common constant C̃ to rewrite

E
[∣∣∣UK,m

0 − U0
∣∣∣] ≤C̃ (log

1
2 (m)

m1/4 + 1√
m

+ max
n=1,...,N−1

(∥∥∥ΠK
n Qn −Qn

∥∥∥
πn

+ 2
∥∥∥Qn1{|Qn|≥m1/8}

∥∥∥
πn

)
+m

2−p
16

)
.

Now it suffices to note that the terms
∥∥∥ΠK

n Qn −Qn

∥∥∥
πn

converge to 0 asK →∞ by Theorem 4, the

terms
∥∥∥Qn1{|Qn|≥m1/8}

∥∥∥
πn

converge to 0 asm→∞ by dominated convergence and the remaining
terms trivially converge to 0 asm→∞.

null eth-zurich

Page 45

Appendix B. Convergence of the Randomized Fitted Q-Iteration (RFQI)

Similar as in Section A, we first introduce some additional technical notation needed for the proofs.
Then we describe the steps from the theoretical idea of RFQI to its implementable version that was
presented in Section 3. In contrast to Section A, the algorithms described here are applied simultane-
ously for all times. Again, the proof is a direct consequence of (Tsitsiklis and Van Roy, 2001) and the
universal approximation theorem of Zhang et al. (2012), but is given in detail for completeness.

B.1 Definitions

In Section 6, Tsitsiklis and Van Roy (2001) introduced a reinforcement learning version of their optimal
stopping algorithm, where a stopping function is learned that generalizes over time. In particular,
instead of learning a different function for each time step, a single function that gets the time as input
is learned with an iterative scheme. In accordance with this, the random basis functions are redefined
such that they also take time as input

ϕkRd × {0, . . . , N − 1} → R,

(x, n) 7→ ϕk(x, n) := σ
(
α⊤

k (x, n)⊤ + βk

)
,

with αk ∈ Rd+1 and βk ∈ R. For 0 ≤ n ≤ N − 1 let ΦK,n be defined similarly to before as

(ΦK,nθ) (x) := θ⊤ϕ(x, n) :=
K∑

k=1
θkϕk(x, n),

for θ ∈ RK and x ∈ Rd. Moreover, let Φk := (ΦK,0, . . . ,ΦK,N−1), such that

Φkθ := (ΦK,0θ, . . . ,ΦK,N−1θ) .

In the following, we consider the product space
(
L2)N := L2 (π0)×· · ·×L2 (πN−1), which is the space

on which the functions for all time steps can be defined concurrently. ForJ = (J0, . . . , JN−1) ∈
(
L2)N

we define the norm

∥J∥π := 1
N

N−1∑
n=0
∥Jn∥πn

,

where ∥ · ∥πn is as defined in Section A. Let us define the projection operator ΠK as

null eth-zurich

Page 46

(
ΠKJ

)
:= arg min

ΦKθ
∥ΦKθ − J∥π ,

for J = (J0, . . . , JN−1) ∈
(
L2)N . Finally, we define the operator

H :
(
L2
)N
→
(
L2
)N

,

J0
...

JN−2

JN−1

 7→

αE0 max (g, J1)
...

αEN−2 max (g, JN−1)
αEN−1g

 ,

whereEn and g are as defined in the previous sections.

B.2 Theoretical Description of the Algorithm

Based on the definitions in Section A.2, we first introduce the exact algorithm and then give the two-step
approximation with the idealized and implementable algorithm.

B.2.1 Exact Algorithm

LetQn as defined in (10), thenQ := (Q0, . . . , QN−1) satisfiesQ = HQ by definition. In particular,Q is
a fixed point ofH . It was shown in (Tsitsiklis and Van Roy, 2001, Section 6) thatH is a contraction with
respect to the norm ∥ · ∥π with contraction factor α. Hence, the Banach fixed point theorem implies
that there exists a unique fixed point, which therefore has to beQ, and that for any starting element
J0 ∈

(
L2)N , J i converges toQ in

(
L2)N as i→∞, where J i+1 := HJ i. This yields a way to find the

exact algorithmQ iteratively.

B.2.2 Idealized Algorithm

The combined operator ΠKH is a contraction on the space ΠK
(
L2)N , since the projection operator

is a non-expansion as outlined in (Tsitsiklis and Van Roy, 2001, Section 6). The idealized algorithm is
then defined as the unique fixed point Q̃K of ΠKH , which can again be found by iteratively applying
this operator to an arbitrary starting point. Since any element in ΠK

(
L2)N is given as ΦKθ for some

weight vector θ ∈ RK , this iteration can equivalently be given as iteration on the weight vectors. To do
this, let us assume without loss of generality that (ϕk)1≤k≤K are independent (if not, see the strategy

null eth-zurich

Page 47

in Proof of Theorem 5 and 6). Then, given some starting weight vector θ0
K , the iterative application of

ΠKH defines the weight vectors

θi+1
K := α

(
E
[

N−1∑
n=0

ϕ⊤
1:K (Xn, n)ϕ1:K (Xn, n)

])−1

· E
[

N−1∑
n=0

ϕ⊤
1:K (Xn, n) ·max

(
g (Xn+1) ,

(
ΦK,n+1θ

i
K

)
(Xn+1)

)]
,

where ϕ1:K = (ϕ1, . . . , ϕK). This closed-form solution is exactly the ordinary least squares (OLS)
formula and this result was shown in (Tsitsiklis and Van Roy, 2001, Section 6).

B.2.3 Implementable Algorithm

An implementable version of this iteration is defined by the Monte Carlo approximation of the weight
vectors. In particular, we assume thatm realizations

(
xj

0, . . . , x
j
N

)
1≤j≤m

ofX are sampled and fixed

for all iterations. Then for θ̂0
K,m = θ0

K we iteratively define

θ̂i+1
K,m := α

 m∑
j=1

N−1∑
n=0

ϕ⊤
1:K

(
xj

n, n
)
ϕ1:K

(
xj

n, n
)−1

·
m∑

j=1

N−1∑
n=0

ϕ⊤
1:K

(
xj

n, n
)
·max

(
g
(
xj

n+1

)
,
(
ΦK,n+1θ̂

i
K,m

) (
xj

n+1

))
,

which in turn defines Q̂K,m,i := ΦK θ̂
i
K,m. As explained in (Tsitsiklis and Van Roy, 2001, Section 6), this

implementable iteration can equivalently be described as iteratively applying the operator Π̂KH . Here
Π̂KH is identical to ΠKH , but with the measures πn replaced by the empirical measures π̂n arising
from the sampled trajectories

(
xj

0, . . . , x
j
N

)
1≤j≤m

. Hence, Π̂KH is also a contraction and Banach’s
fixed point theorem implies convergence to the unique fixed point

Q̂K,m,i i→∞−→ Q̂K,m =: ΦK θ̂
⋆
K,m.

We note that this also implies that θ̂i
K,m

i→∞−→ θ̂⋆
K,m.

null eth-zurich

Page 48

B.3 Convergence Result

In the following, we show that prices of Bermudan options computed with the two approximation steps
of the exact algorithm converge to the correct price, asK,m→∞. The prices are defined similarly
as in Section A.4. Hence, it is enough to show that Q̂K,mi,i converges to Q̃K as i→∞ and that Q̃K

converges toQ asK →∞.

Theorem 8. Q̃K converges P̃-a.s. toQ asK →∞, i.e.

∥∥∥Q̃K −Q
∥∥∥

π

P̃−a.s.−→
K→∞

0.

Proof First, let us recall (Tsitsiklis and Van Roy, 2001, Theorem 3), which states that for 0 < κ < 1 the
contraction factor of ΠKH , we have

∥∥∥Q̃K −Q
∥∥∥

π
≤ 1√

1− κ2

∥∥∥ΠKQ−Q
∥∥∥

π
.

Now remark that since ΠK is a non-expansion andH a contraction with factor α, we have κ ≤ α < 1.
Therefore, for everyK we have

∥∥∥Q̃K −Q
∥∥∥

π
≤ 1√

1− α2

∥∥∥ΠKQ−Q
∥∥∥

π
.

Finally, we remark that Theorem 4 holds equivalently for the norm ∥ · ∥π, since the universal approxi-
mation theorem can equivalently be applied to the functions with the combined input (x, n). Hence,
the right hand side of (14) converges to 0P̃-a.s. asK →∞.

We recall that the weight vectors θ̂i
K,m are random variables since they depend on the m sampled

trajectories ofX .

Lemma 9. For any fixed i ∈ N we have that θ̂i
K,m converges to θi

KQ-a.s. asm→∞.

Proof The proof follows the proof of (Tsitsiklis and Van Roy, 2001, Theorem 2). We introduce the
intermediate weight as

θ̃i
K,m := α

 m∑
j=1

N−1∑
n=0

ϕ⊤
1:K

(
xj

n, n
)
ϕ1:K

(
xj

n, n
)−1

·
m∑

j=1

N−1∑
n=0

ϕ⊤
1:K

(
xj

n, n
)
·max

(
g
(
xj

n+1

)
,
(
ΦK,n+1θ

i−1
K

) (
xj

n+1

))
.

Then it is clear that θ̃i
K,m converges to θi

KQ-a.s. asm→∞, by the strong law of large numbers. Hence,

null eth-zurich

Page 49

δi(m) :=
∣∣∣θ̃i

K,m − θi
K

∣∣∣
2

converges to 0Q-a.s. Moreover, for suitably chosen random variablesAi(m)
that remain bounded asm→∞, we have

θ̂i
K,m − θ̃i

K,m = Ai(m)
∣∣∣θ̂i−1

K,m − θ
i−1
K

∣∣∣
2
.

Therefore we have by the triangle inequality

∣∣∣θ̂i
K,m − θi

K

∣∣∣
2
≤ δi(m) +Ai(m)

∣∣∣θ̂i−1
K,m − θ

i−1
K

∣∣∣
2
.

Since (by our choice) we start with the same weight vector θ̂0
K,m = θ0

K , we can conclude by induction
that

∣∣∣θ̂i
K,m − θi

K

∣∣∣
2
Q−a.s.−→
m→∞

0.

However, we remark that this proof only works as long as i is fixed, but not in the limit i→∞, since
their induction would lead to an infinite sum.

Theorem 10. Let K ∈ N be fixed. Then there exists a random sequence (mi)i≥0 such that Q̂K,mi,i

converges Q-a.s. to Q̃K as i→∞, i.e.

∥∥∥Q̂K,mi,i − Q̃K
∥∥∥

π

Q− a.s.−→
i→∞

0.

Proof Let us define θ⋆
K ∈ RK to be the weight vector of the unique fixed point Q̃K of ΠKH , i.e. Q̃K =

ΦKθ
⋆
K . From Banach’s fixed point theorem we know that

∣∣θi
K − θ⋆

K

∣∣
2 → 0 as i→∞.

With Lemma 9 we know that for every i ∈ N there exists Ωi ⊂ Ω with Q (Ωi) = 1 such that θ̂i
K,m(ω)

converges to θi
K for all ω ∈ Ωi. Let Ω∞ := ∩∞

i=1Ωi be the set on which this convergence holds for all
i ∈ N, then Q (Ω∞) = 1. Fix ω ∈ Ω∞. Now let us choosem0 = 0 and for every i > 0,mi > mi−1 such
that

∣∣∣θ̂i
K,mi

(ω)− θi
K

∣∣∣
2
≤ 1/i. Therefore, we obtain that

∣∣∣θ̂i
K,mi

(ω)− θ⋆
K

∣∣∣
2
≤
∣∣∣θ̂i

K,mi
(ω)− θi

K

∣∣∣
2

+
∣∣∣θi

K − θ⋆
K

∣∣∣
2
≤ 1
i

+
∣∣∣θi

K − θ⋆
K

∣∣∣
2
,

which converges to 0 when i tends to infinity.

null eth-zurich

Page 50

Appendix C. Convergence of the Randomized Recurrent Least Square
Monte Carlo (RRLSM)

In this section, we extend the results of Section A to the non-Markovian setting, where we assume
that the path up to the current time is a Markov process. In particular, given a discrete time stochastic
process X = (X0, . . . , XN) as before, we assume that its extension Z = (Z0, . . . , ZN) with Zn =
(Xn, Xn−1, . . . , X0, 0, . . . , 0) taking values in RN+1×d for all 0 ≤ n ≤ N is a Markov process. Hence,
all results of Section A hold similarly up to replacingX byZ and they also hold for payoff functions
that depend on the entire path of X up to the current time. In particular, this immediately implies
that RLSM with the path inputZ approximates the correct price of the Bermudan option arbitrarily
well asK →∞. Therefore, it is only left to show that an equivalent result to Theorem 4 holds for our
randomized recurrent neural network (6), which takes X as input instead of Z, but makes use of a
latent variable in which information about the past is stored.

Fix some 1 ≤ n ≤ N − 1 and let πn now be the distribution of Zn under Q. Moreover, let the basis
functions ϕn = (ϕn

k)k≥1 be now given by the n-th latent variable hn of (6). In particular, we define ϕn
k

as the function mapping zn = (xn, xn−1, . . . , x0, 0, . . . , 0) to the k-th coordinate of

hn = σ (Axxn +Ahhn−1 + b) ,

where h−1 = 0. By abuse of notation, for growing k we let the matrices grow by adding now rows of
random elements to b, Ax andAh and filling up the new columns of previous rows ofAh with zeros.
Like this, ϕn

k is well defined for all k ≥ 1. The operator ΠK
n is defined similarly as before, but with this

new set of basis functions, defined on the set of πn-integrable function J . Then we have to show that
the following results are true, so that the assumptions for Theorem 5 and 6 are satisfied. The remainder
of their proof works as before.

Proposition 11. If the activation function σ is invertible then for all 0 ≤ n ≤ N − 1

Before we start with the proof, we remark that standard results for the approximation of dynamical
systems with RNNs (Schäfer and Zimmermann, 2006) and reservoir computing systems (Gonon and
Ortega, 2020) do not apply here, since the dynamical system to approximateQ = (Q0, . . . , QN−1) is

null eth-zurich

Page 51

not time-invariant (in the language of Gonon and Ortega (2020)).

Proof Firstly, we note that it is enough to show that for any ϵ > 0 there exists some sizeK ∈ N and
weight matrices b, Ax, Ah such that the corresponding neural network approximation Π̃n

KQn satisfies∥∥∥Π̃K
n Qn −Qn

∥∥∥
πn

< ϵ for all 0 ≤ n ≤ N − 1. Indeed, if this is true, the convergence (15) follows by the
same arguments as in (Zhang et al., 2012, Theorem 3).

Secondly, we note that it is enough to show the statement above for any fixed n separately, i.e. that
for each 0 ≤ n ≤ N − 1 and ϵ > 0 there existKn ∈ N and weight matrices bn, An

x, A
n
h such that the

corresponding neural network approximation Π̃n
KQn satisfies

∥∥∥Π̃K
n Qn −Qn

∥∥∥
πn

< ϵ. Indeed, if this is
true, the stronger statement follows immediately by setting

Ax =

A0

x
...

AN−1
x

 , Ah =

A0

h

. . .
AN−1

h

 and b =

b0

...
bN−1

 .

Hence, let us fix some ϵ > 0 and n and let us assume that d = 1 for simplicity of notation, while the
extension to d > 1 is immediate. Then we know from Theorem 4 that there exists some neural network
f such that ∥f −Qn∥πn

< ϵ. The difference between the approximation Π̃n
K and f is that Π̃n

K gets a
recurrent input, while f gets the entire path as input. However, sincen is fixed and finite, we can simply
accumulate the same path information in hn by setting b0 = 0, A0

x = (1, 0, . . . , 0)⊤ ∈ Rn and

A0
h =

0 . . . 0
1 0 . . . 0

0
...
0 . . . 0 1 0

∈ Rn×n.

Indeed, with this choice we have h0
n−1 =

(
σ (xn−1) , σ (σ (xn−2)) , . . . , σ(n) (x0)

)⊤
. Let us define the

function

φ : (xn, . . . , x0, 0, . . . , 0) 7→
(
xn, σ (xn−1) , . . . , σ(n) (x0)

)
Under the assumption thatσ is invertible alsoφ is and there exists a function Q̃n such that Q̃n◦φ = Qn.
SinceQn is integrable with respect to πn, the change of variables formula implies that Q̃n is integrable
with respect to φ−1 ◦ πn and E(φ−1◦πn) [Q̃n

]
= Eπn

[
Q̃n ◦ φ

]
= Eπn [Qn]. Therefore, there exists a

neural network f̃ = β̃σ(Ã ·+b̃) such that

null eth-zurich

Page 52

∥∥∥f̃ ◦ φ−Qn

∥∥∥
πn

=
∥∥∥(f̃ − Q̃n

)
◦ φ
∥∥∥

πn

=
∥∥∥f̃ − Q̃n

∥∥∥
φ−1◦πn

< ϵ.

By extending b0, A0
x, A

0
h to

b =
(
b0

b̃

)
, Ax =

(
A0

x

Ã1

)
, Ah =

(
A0

h 0
Ã2:n+1 0

)
,

where Ã =
(
Ã1, Ã2:n+1

)
, we get

hn =

 σ
(
A0

xxn +A0
hh

0
n−1 + b0)

σ
(
Ãφ (zn) + b̃

) .
Therefore, we can conclude the proof, since the corresponding approximation Π̃n

K satisfies∥∥∥Π̃n
KQn −Qn

∥∥∥
πn

≤
∥∥∥f̃ ◦ φ−Qn

∥∥∥
πn

≤ ϵ

Remark 12. The idea of the proof is to use the recurrent structure only to recover the path-wise input
zn for which the standard feed-forward neural network approximation results can be used. This is
clearly less efficient than using the path-wise input directly. However, in practice, the recurrent neural
network approach is usually more efficient than the path-wise approach, finding better ways to store
and process the past information than the one given in the proof. This is in line with our empirical
findings.

null eth-zurich

Page 53

null eth-zurich

Page 54

C.2 Non-Markovian Stock Models - Additional Tables

Table 16: Max call option on Heston for different numbers of stocks d.

Table 17: Min put option on Heston for different numbers of stocks d and varying initial stock price x0.
Here r = 2% is used as interest rate.

Table 18: Max call option on Heston for different numbers of stocks d. Here r = 5% is used as interest
rate and δ = 10% as dividend rate.

null eth-zurich

	Introduction
	Optimal Stopping via Randomized Neural Networks
	American and Bermudan Options
	Option Price and Optimal Stopping.
	Monte Carlo Simulation and Backward Recursion
	Randomized Neural Network Approximation of the Continuation Value
	Least Squares Optimization of Last Layer's Parameters n
	Splitting the Data Set into Training and Evaluation Set
	Algorithm
	Guarantees of Convergence
	Possible Extensions

	Optimal Stopping via Randomized Reinforcement Learning
	Guarantees of Convergence.

	Optimal Stopping via Randomized Recurrent Neural Networks for Non-Markovian Processes
	Guarantees of Convergence

	Related Work
	Optimal Stopping
	Optimal Stopping Via Backward Induction
	Optimal Stopping via Backward Induction using Neural Networks.
	Optimal Stopping Via Reinforcement Learning

	Randomized Neural Networks and Reservoir Computing
	Backward Induction versus Reinforcement Learning

	Experiments
	Experimental Setup
	Baselines (LSM, NLSM, DOS And FQI)
	Choice of Basis Functions for the Baselines
	No Regularization for LSM And FQI
	Architecture of Neural Networks

	The Markovian Case - Bermudan Option Pricing
	Stock Models (Black-Scholes and Heston)
	Payoffs (Max Call, Geometric Put, Basket Call and Min Put)
	Reference Prices
	Results and Discussion
	Computation of Greeks
	Empirical Convergence Study

	The Non-Markovian Case - Optimally Stopping Fractional Brownian Motions
	Stock Model, Payoffs and Baselines
	Results and Discussion

	Non-Markovian Stock Models
	Heston Without Variance as Input
	Rough Heston

	Discussion on the Sensitivity of the Randomness of the Hidden Layers
	Conclusion
	Acknowledgments
	References
	Appendix A. Convergence of the Randomized Least Square Monte Carlo (RLSM)
	A.1 Definitions
	A.2 Theoretical Description of RLSM
	A.2.1 Exact Algorithmic
	A.2.2 Idealized Algorithm
	A.2.3 Implementable Algorithm
	A.3 Preliminary Results
	A.4 Convergence Results
	A.4.2 Convergence Results Based On Zanger (2020)
	Appendix B. Convergence of the Randomized Fitted Q-Iteration (RFQI)
	B.1 Definitions
	B.2 Theoretical Description of the Algorithm
	B.2.1 Exact Algorithm
	B.2.2 Idealized Algorithm
	B.2.3 Implementable Algorithm
	B.3 Convergence Result
	Appendix C. Convergence of the Randomized Recurrent Least Square Monte Carlo (RRLSM)
	C.2 Non-Markovian Stock Models - Additional Tables

